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solvers have grown powerful enough to be general purpose reasoning engines through-

out software engineering and computer science. However, most practical use cases

of SAT/SMT solvers require not just solving a single SAT/SMT problem, but solving

sets of related SAT/SMT problems. This discrepancy was directly addressed by the

SAT/SMT community with the invention of incremental SAT/SMT solving. However,

incremental SAT/SMT solvers require users to hand write a program which dictates the

terms that are shared between problems and terms which are unique. By placing the

onus on users, incremental solvers couple the users’ solution to the users’ exact se-

quence of SAT/SMT problems—making the solution overly specific—and require the

user to write extra infrastructure to coordinate or handle the results.

This dissertation argues that the aforementioned problems result from accidental

complexity produced by solving a problem that is variational without the concept of
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constructs. To demonstrate the argument, this thesis applies theory from variational pro-
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an industrial strength SAT solver.
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1

Chapter 1: Introduction

Controlling complexity is a central goal of any programming language, especially as

software written in that language grows. The burgeoning field of variation theory and

variational programming [53, 52, 67, 35, 134] attempt to control a kind of complexity

which arises in software when many similar yet distinct kinds of the same software must

coexist. For example, software is ported to other platforms, creating similar, yet distinct

instances of that software which must be maintained. Such instances of variation are

ubiquitous: Web applications are tested on multiple servers; programming languages

maintain backwards compatibility and so do software libraries; databases evolve over

time, locale, and data; and device drivers must work with varying processors and archi-

tectures. Variation theory and variational programming have been successful in specific

systems [51, 121, 99], but have not been tested in a performance demanding general

domain. In the words of Joe Armstrong [9], “No theory is complete without proof that

the ideas work in practice”; this is the project of this thesis, to put the ideas of variation

and variational programming to the test in the practical domain of satisfiability solving.

The work of Borba et al. [24] provides a formal definition of a variational system in

the domain of software product lines which they call a theory of software product line

refinement. Unfortunately this formalism is tightly coupled to software product lines.

Furthermore the terms variation-aware and variational system are used interchangeably

in the research literature. For clarity, we provide the following working definitions for
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this thesis:

Definition 1.0.1 (Variational Problem). A problem is variational if separate instances

of the problem share elements which are critical to solving the instance of the problem,

and elements which are not shared are able to be deterministically represented.

Consider the non-variational problem of finding the sum of a set of numbers, such

as ns = {1, 2, 3, 5, 7}. The problem becomes variational when we want to find the sum

of ns and another sum for a related set ns ′ = {1, 2, 3, 13, 17}. ns ′ shares three elements

1, 2, and 3 with ns , and so finding the sum of each is a related but distinct instance

of the non-variational problem. The shared elements cannot be ignored, as this would

change the solution for each set, and the elements which are not in both sets can be

deterministically represented either by a subset or property: {n | n ∈ ns , n /∈ ns ′}. Now

we can define variational systems as systems that exploit these facts to solve variational

problems.

Definition 1.0.2 (Variational or variation-aware system). A system is variational or

variation-aware if it uses the shared elements of a variational problem to solve all or

some instances of the problem.

So a variational summation of ns and ns ′ should exploit the fact that {1, 2, 3} are

shared elements. A viable strategy might be to translate the problem into two sub-

problems, one to sum the shared elements and one to sum the rest. With this procedure

the summation of ns is
∑

n∈ns n =
∑

s∈ss s +
∑

n∈ns\ss n where ss = {s | s ∈ ns ∩

ns ′}. Since the variational summation understands which elements are shared and

which are not, the procedure can sum the shared elements only once, and then reuse
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that result for the sum of ns ′. This allows the variational summation to avoid redundant

summations over the shared terms because we have framed the problem as a variational

problem.

The major contribution of this thesis is the formalization of a variational satisfia-

bility solver, that is, a satisfiability solver which exploits shared terms between sets of

related satisfiability solving problems to solve some or all of those problems efficiently.

In search of this goal, the thesis additionally formalizes variational propositional logic

and constructs a variational SAT solver. In the next section we motivate the use of vari-

ation theory and variational techniques in satisfiability solving. In addition to work on

variational SAT, several other contributions are made. The thesis extends variational sat-

isfiability solving to variational SMT. It presents reusable techniques and architecture

for constructing variational or variation-aware systems using the non-variational coun-

terparts of these systems for other domains. It shows that, with the concept of variation,

the variational SMT and SAT solvers can be parallelized, although we do not formalize

the parallelization leaving it to future work.

1.1 Motivation and Impact

Classic SAT, which solves the boolean satisfiability problem [22] has been one of the

largest success stories in computer science over the last two decades. Although SAT

solving is known to be NP-complete [40], SAT solvers based on conflict-driven clause

learning (CDCL) [91, 119, 18] have been able to solve boolean formulae with millions

of variables quickly enough for use in real-world applications [129]. This has led to their
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proliferation in several fields of scientific inquiry ranging from software engineering to

bioinformatics [90, 58].

The majority of research in the SAT community focuses on solving a single SAT

problem as fast as possible, yet many practical applications of SAT solvers [120, 117,

135, 26, 49, 47, 56] require solving a set of related SAT problems [117, 120, 47]. To

take just one example, software product-lines utilize SAT solvers for a diverse range

of analyses including: automated feature model analysis [19, 57, 124], feature model

sampling [95, 130], anomaly detection [5, 79, 93], and dead code analysis [122].

This misalignment between the SAT research community and the practical use cases

of SAT solvers is well known. To address the misalignment, modern solvers attempt to

propagate information from one solving instance, on one problem, to future instances

in the problem set. Initial attempts focused on clause sharing (CS) [117, 135] where

learned clauses from one problem in the problem set are propagated forward to future

problems. Modern solvers are based on a major breakthrough that occurred with incre-

mental SAT under assumptions, introduced in Minisat [48].

Incremental SAT under assumptions, made two major contributions: a performance

contribution, where information including learned clauses, restart and clause-detection

heuristics are carried forward; and a usability contribution; where Minisat exposed

an interface that allowed the user to directly program the solver. Through the interface,

the user can add or remove clauses and dictate which clauses or variables are shared and

which are unique to the problem set, thus directly addressing the practical use case of

SAT solvers.

Despite its success, the incremental interface introduces a programming language
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that requires an extra input, the set of SAT problems, and a program to direct the solver

with side-effectual statements. This places further burden on the user. First, the system

is less-declarative as the user must be concerned with the internals of the solver. Sec-

ond, a new class of errors is possible as the input program could misuse the introduced

side-effectual statements. Third, by requiring the user to direct the solver, the users’ so-

lution is specific to the exact set of satisfiability problems at hand, thus the programmed

solution is specific to the problem set and therefore to the solver input. Finally, should

the user be interested in the assignment of variables under which the problem at hand is

found to be satisfiable, then the user must create additional infrastructure to track results,

which again couples to the input and is therefore difficult to reuse.

We argue that solving a set of related SAT problems is a variational programming

problem, and by directly addressing the problem’s variational nature, the incremental

SAT interface and performance can be improved. The essence of variational program-

ming is a formal language called the choice calculus. With the choice calculus, local

points of variation are able to be explicitly represented. Furthermore, sets of problems

in the SAT domain can be expressed syntactically as a single variational artifact. The

benefits are numerous:

1. The side-effectual statements are hidden from the user, recovering the declarative

nature of non-incremental SAT solving.

2. Malformed programs built around the control flow operators become syntactically

impossible.

3. The user’s programmed solution is decoupled from the specific problem set, in-
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creasing software reuse.

4. The solver has enough syntactic information to produce results which previously

required extra infrastructure constructed by the user.

5. Previously difficult optimizations can be syntactically detected and applied before

running the solver.

This work is applied programming language theory in the domain of satisfiability

solvers. Due to the ubiquity of satisfiability solvers, estimating the impact is difficult

although the surface area of possible applications is large. For example, many analyses

in the software product-lines community use incremental SAT solvers. By creating a

variational SAT solver such analyses directly benefit from this work, and thus advance

the state of the art. For researchers in the incremental satisfiability solving community,

this work serves as an avenue to construct new incremental SAT solvers which efficiently

solve classes of problems that deal with variation.

For researchers studying variation, the significance and impact is several fold. By

utilizing results in variational research, this work adds validity to variational theory and

serves as an empirical case study. By directly handling variation, this work demonstrates

direct benefits to be gained for researchers in other domains and magnifies the impact

of any results produced by the variational research community. Lastly, the result of this

thesis, a variational SAT solver provides a tool to reason about variation itself.
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1.2 Contributions and Outline of this Thesis

The goal of this thesis is to use variation theory to formalize and construct a variational

satisfiability solver that understands and can solve SAT problems that contain varia-

tional values in addition to boolean values. It is our desire that the work not only be

of theoretical interest but of practical use. Thus, the thesis provides numerous exam-

ples of variational SAT and variational SMT problems to motivate and demonstrate the

solver. The rest of this section outlines the thesis and expands on the contributions of

each chapter:

1. Chapter 2 (Background) provides the necessary material for a reader to understand

the contributions of the thesis. This section provides an overview of satisfiability

solving, satisfiability-modulo theories solving, incremental SAT and SMT solv-

ing. Several important concepts are introduced: First, the definition of satisfiabil-

ity and the boolean satisfiability problem. Second, the internal data structure that

incremental SAT solvers use to provide incrementality, and the operations that

manipulate the incremental solver and form the basis of variational satisfiability

solving. Third, the definition of the output of a SAT or SMT solver which has

implications for variational satisfiability solving and variational SMT.

2. Chapter 3 (Variational Propositional Logic) introduces a variational logic that a

variational SAT solver operates upon. This section introduces the essential aspects

of variation using propositional logic and in the process presents the first instance

of a variational system recipe to construct a variation-aware system using a non-

variational version of that system. Several variational concepts are defined and
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formalized which are used throughout the thesis, such as variant, configuration

and variational artifact. Lastly, the section proves theorems that are required to

prove the soundness of variational satisfiability solving. Major portions of this

section are adapted from published [139].

3. Chapter 4 (Variational Satisfiability Solving) makes the central contribution of

the thesis. In this chapter we define the general approach and architecture of a

variational SAT solver. The general approach is the second presentation of the

aforementioned recipe; in this case, using a SAT solver rather than propositional

logic. This section is an expanded version of published peer-reviewed work [139].

It provides a rationale for our design and makes several important contributions:

(a) The definition of the variational satisfiability problem.

(b) A formal semantics of variational satisfiability solving. A variational SAT

problem is an encoding of the problem in variational propositional logic that

is translated to an incremental SAT program which is suitable for execution

on an incremental SAT solver.

(c) A formal definition of several concepts such as a variational core which are

transferable to domains other than SAT. Variational cores are key to our

approach, and enable the preservation of shared terms between variants.

(d) A definition of a variational compiler. The compiler is defined as a varia-

tional fold which is the basis for the performance gains presented in the the-

sis. The folding algorithm has three phases to ensure non-variational terms
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are shared across SAT problems and plain terms are processed before varia-

tional terms, thus mitigating redundant computation.

(e) A definition of the variational output that is returned to the user. The output

presents several unique challenges that must be overcome while still being

useful for the user. We present and consider these concerns and provide a

solution.

4. Chapter 5 (Variational Satisfiability-Modulo Theory Solving) extends the varia-

tional solving algorithm to consider SMT theories and propositions which include

numeric values such as Integers and Reals in addition to Booleans. We present

the requisite extensions to the variational propositional logic, the variational com-

piler and solving algorithm, and extend the output to support types other than just

Booleans. We demonstrate that our method fully generalizes to the core SMT

theories in the SMTLIB2 standard.

5. Chapter 6 (Case Studies) The central project of this thesis is to evaluate the ideas

of variational programming in satisfiability solving. Having defined and con-

structed a variational SAT and SMT solver, this chapter empirically assesses the

prototype variational solvers. This chapter is adapted from work currently under

review [140].

6. Chapter 7 (Related Work) is split into two sections. First, this work is related

to numerous SAT solvers that attempt to reuse information, solve sets of SAT

problems, and implement incremental SAT solving. We situate this work in the

context of these solvers. Second, this thesis is part of a lineage of recent variation-
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aware systems, thus this section collects this research and provides a comparison

of our method to create a variation-aware system with previous methods.

7. Chapter 8 (Conclusion and Future Work) summarizes the contributions of the the-

sis and relates the work to the central project of the thesis. In addition to the

conceptual point, numerous areas of future work are discussed, such as further

variational extensions, faster implementation strategies and the possibility to reuse

our findings to create a variational Prolog [136, 80].
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Chapter 2: Background

This section provides background on SAT and incremental SAT solving, and assumes

knowledge of propositional logic. It is intended as an introduction to these concepts

for a general audience. Specific techniques or algorithms behind satisfiability solvers

are not discussed in detail. All descriptions follow SMTLIB2 [16], the standardized

language for interacting with SAT solvers, and describe incremental solvers as a black

box. Following the notation from the many-valued logic community [109] we refer to

propositional logic as C2, which denotes a two-valued logic.

2.1 SMTLIB2 and Satisfiability Solving

A satisfiability solver is a software system that solves the Boolean Satisfiability Prob-

lem [110]. One of the oldest problems in computer science1 and famously NP-complete [40],

the Boolean satisfiability problem is the problem of determining if a formula (sometimes

called a sentence) in propositional logic has an assignment of Boolean values to vari-

ables, such that under substitution the formula evaluates to true (T). We formalize the

problem and terms in the following definitions:

Definition 2.1.1 (Model). Assume a formula in propositional logic, f ∈ C2, which

contains a set of Boolean variables vs . A model, m, is a set of assignments of Boolean
1See Biere et al. [22] for a complete history from the ancients, through to George Boole to the modern

day.
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values to variables in f such that f evaluates to T.

Definition 2.1.2 (Satisfiable). Assume a formula in propositional logic, f , which con-

tains a set of Boolean variables vs. If there exists a model for f , then we say f is

satisfiable.

Definition 2.1.3 (Validity). In propositional logic a formula or sentence is valid if it is

true in all possible models [110]. That is, a valid formula or sentence is also a tautology.

For example, we can show that the formula good = (a ∧ b) ∨ c is satisfiable with

the model {(a := T), (b := T), (c := F)}, because (T ∧ T) ∨ F results in T. However, a

formula such as bad = (a ∨ b) ∧ F is not satisfiable as no assignment of F or T to the

variables a and b would allow bad to evaluate to T. With these preliminaries, we can

define the Boolean Satisfiability Problem.

Definition 2.1.4 (Boolean Satisfiability Problem). For a formula in propositional logic,

f , determine if f is satisfiable. [110]

While the formal definition of the Boolean Satisfiability Problem requires a formula

in propositional logic, expressing a SAT problem in a representation suitable to a SAT

solver can be cumbersome. Modern satisfiability solvers accept programs written in

domain specific programming languages. These programming languages serve three

purposes: to succinctly express SAT problems, to communicate these problems to other

people, and to dictate the problems to the solver. Due to the proliferation of solver

specific languages, an international initiative has coalesced competing solver languages

into a single standard called SMTLIB2.
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The SMTLIB2 standard [16] formalizes a set of programming languages that define

interactions with a SAT or SMT solver. The standard defines four languages, of which

only two are used throughout this thesis: a term language, which is a language for

defining variables, functions, and formulas in propositional and first-order logic. The

command language, which is a programming language to interact with the solver. The

command language is used to add or remove formulas, query the solver for a model or

check for satisfiability, and other side-effectual interactions such as printing output.

For the remainder of this section we provide informal examples and cover only the

commands and concepts required for subsequent sections of the thesis. For a full lan-

guage specification please see Barrett et al. [16].

Below is an SMTLIB2 program that verifies that peirce’s law implies the law of the

excluded middle for propositional logic:

(declare-const a Bool) ; ; variable declarations
(declare-const b Bool)
(define-fun ex-middle ((x Bool)) Bool ; ; excluded middle: x ∨ ¬x

(or x
(not x)) )

(define-fun peirce ((x Bool) (y Bool)) Bool ; ; Peirce’s law: ((x→ y)→ x)→ x
(=>

(=> (=> x y)
x)

x))
(define-fun peirce-implies-ex-middle () Bool

(=> (peirce a b)
(ex-middle a)))

(assert (not peirce-implies-ex-middle)) ; ; add assertion
(check-sat) ; ; check SAT of all assertions

Comments begin with a semi-colon (;) and end at a new line. The program, and ev-

ery SMTLIB2 program, is a sequence of commands that interact with the solver. For



14

example, the above program consists of seven commands, two variable declarations,

three function definitions, an assertion and a command to check satisfiability. Each

command is an s-expressions [94] to simplify parsing [16]. For our purposes, one only

needs to understand that commands and functions are called by opening parentheses.

The first element after the opening parenthesis is the name of the command or function,

and subsequent elements are arguments to that command or function. For example, (

declare-const a Bool) is an s-expression with three elements that defines the C2 variable

a of sort (or type in programming language terms) Bool. The first element, declare-

const is the command name, the second is the user defined name for the variable and

the third is its sort. Similarly, the s-expression (and a b) passes the variables a and b

to the function and, which returns the conjunction of these two variables. Consider a

more complicated example; the function definition define-fun takes four arguments: the

user defined name, peirce- is -ex-middle; an s-expression that defines argument names

and their sorts, ((x Bool) (y Bool)); a return sort, Bool; and the body of the function.

The command check-sat begins the solving sub-routine to solve the described SAT or

SMT problem. check-sat can return two values, SAT or UNSAT, which corresponding to

finding the SAT or SMT problem satisfiable or unsatisfiable.

Internally, an SMTLIB2 compliant solver such as z3 [45] maintains a stack called

the assertion stack that tracks user provided variable and formula declarations and def-

initions. The elements of the assertion stack are called levels and are sets of assertions.

An assertion is a logical formula, a declaration of a sort, or a definition of a function

symbol. Sets of assertions are placed on the stack via the assert command. The assert
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command takes a term as input2, collects all associated definitions and declarations and

places the assertion set on the assertion stack. Thus, the above example only has a single

level on the assertion stack with an assertion set that contains the variable declarations

and the function definitions.

The example demonstrates a common verification pattern in SAT and SMT solving.

In the example, we construct a constraint that asserts (not peirce- is -ex-middle) rather

than peirce- is -ex-middle because we need to verify that Peirce’s law implies the law

of excluded middle for all possible models. Had we elided the not then the first model

which satisfied the theorem would be returned, thus providing a single model where

the theorem holds. However, to prove the theorem we need to show that it holds for

all possible models. The not negates the assertion, thus asking the solver to discover a

counter-example to the theorem. If such a model exists, then the solver has discovered

a counter-example to the theorem. If no such model exists—that is, UNSAT is returned

by the solver—then the negated theorem always evaluates to F and the theorem always

evaluates to T and hence is logically valid.

2.2 Incremental Satisfiability Solving

Suppose we have three related propositional formulas that we want to solve.

p = a ∧ b ∧ c ∧ e q = a ∧ (b ∨ ¬i) ∧ c ∧ (g → c) r = z ↔ (a ∧ b ∧ c ∧ e)

2By the standard, this is a well-sorted term of type Bool. However, we elide this description for
simplicity.
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SAT

SAT

SATr

q

p

resultq

resultr

resultp

(a) Brute force procedure, no reuse be-
tween solver calls.

SAT

SAT

SAT

p

pop e

pop c

pop b

push (b ∨ ¬i)
push c

push (g → c)

resetAssertionStack

push z ↔ (a ∧ b ∧ c ∧ e)

resultq

resultr

resultp

(b) Incremental procedure, reuse defined by
POP and PUSH.

Figure 2.1: Comparison of incremental and non-incremental SAT procedures.

p is simply a conjunction of variables. In q , relative to p, we see that the variables i

and g are added, e is removed, and there are two new clauses: (b ∨ ¬i) and (g → c),

both of which possibly affect the values of b and c. In r , the variables and constraints

introduced in p are further constrained to a new variable, z .

Suppose one wants to find a model for each formula. Using a non-incremental SAT

solver results in the procedure illustrated in Fig. 2.1a, where SAT solving is a batch

process and no information is reused. Alternatively, a procedure using an incremental

SAT solver is illustrated in Fig. 2.1b; in this scenario, all formulas are solved by a single

solver instance where terms are programmatically added or removed from the solver.
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The ability to add and remove terms is enabled by manipulating the assertion stack,

to add or remove levels on the stack. The incremental interface provides two commands:

PUSH to create a new scope and add a level to the stack, and POP to remove the topmost

level on the stack. Consider the following SMTLIB2 program which demonstrates three

levels on the assertion stack. The program follows the procedure outlined in Fig. 2.1b

and solves p, q , and r :

(declare-const a Bool) ; ; variable declarations for p
(declare-const b Bool)
(declare-const c Bool)
(declare-const e Bool)
(assert a) ; ; a is shared between p and q
(push) ; ; solve p

(assert e)
(assert c)
(assert b)
(check-sat) ; ; check-sat on p

(pop) ; ; remove e, c, and b assertions
(push) ; ; solve for q

(declare-const i Bool) ; ; new variables
(declare-const g Bool)
(assert (or b (not i ) ) ) ; ; new clause
(assert c) ; ; re-add c
(assert (=> g c)) ; ; new clause
(check-sat) ; ; check sat of q

(pop) ; ; i and g out of scope
(reset) ; ; reset the assertion stack
(declare-const a Bool) ; ; variable declarations for r
(declare-const b Bool)
(declare-const c Bool)
(declare-const e Bool)
(declare-const z Bool)
(assert (= z (and a (and b (and c (and e )) ) ) ) )
(check-sat) ; ; check-sat on r

We begin by defining p, and assert a outside of a new scope so that it can be reused
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for q . Internally, all levels on the assertions stack are conjoined and asserted when a

CHECK-SAT command is issued. Thus, we reuse a by exploiting this conjunction be-

havior. Had we asserted (and a (and b (and c (and e))) ), then we would not be able to

reuse only the assertion on a since it was created in conjunction with other variables.

The first PUSH command enters a new level on the assertion stack, the remaining vari-

ables are asserted and we issue a CHECK-SAT call. After the POP command, all assertions

and declarations from the previous level are removed. Thus, after we solve q the vari-

ables i and g cannot be referenced as they are no longer in scope. Similarly, after the

first CHECK-SAT call and subsequent POP, e, c, and b are no longer defined.

In an efficient process, one would initially add as many shared terms as possible,

such as a from p and then reuse that term as many times as needed. An efficient process

should perform only enough manipulation of the assertion stack as required to reach

the next SAT problem of interest from the current one. However, notice that doing so

is not entirely straightforward; we were only able to reuse a from p in q because we

defined p in a non-intuitive way by utilizing the internal behavior of the assertion stack.

This situation is exacerbated by SAT problems such as r , where due to the equivalence

between a new term and shared terms, we are forced to completely remove everything

on the stack with a RESET command just to construct r . Thus incremental SAT solvers

provide the primitive operations required to solve related SAT problems efficiently, yet

writing the SMTLIB2 program to solve the set efficiently is not straightforward.
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Chapter 3: Variational Propositional Logic

In this chapter, we present the logic of variational satisfiability problems. The logic is

a conservative extension of classic two-valued logic (C2) with a choice construct from

the choice calculus [52, 133], a formal language for describing variation. We call the

new logic VPL, short for variational propositional logic, and refer to VPL expressions

as variational formulas. This chapter defines the syntax and semantics of VPL and

concludes with a set of definitions, lemmas, and theorems for the logic.

3.1 Syntax

The syntax of variational propositional logic is given in Fig. 3.1a. It extends the propo-

sitional formula notation of C2 with a single new connective called a choice from the

choice calculus. A choice D〈f1, f2〉 represents either f1 or f2 depending on the Boolean

value of its dimension D. We call f1 and f2 the alternatives of the choice. Although

dimensions are Boolean variables, the set of dimensions is disjoint from the set of vari-

ables from C2, which may be referenced in the leaves of a formula. We use lowercase

letters to range over variables and uppercase letters for dimensions.

The syntax of VPL does not include derived logical connectives, such as→ and↔.

However, such forms can be defined from other primitives and are assumed throughout

the thesis.
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t ::= r | T | F Variables and Boolean literals

f ::= t Terminal
| ¬f Negate
| f ∨ f Or
| f ∧ f And
| D〈f, f〉 Choice

(a) Syntax of VPL.

J·K : f → C → f where C : D → B⊥
JtKC = t

J¬fKC = ¬JfKC
Jf1 ∧ f2KC = Jf1KC ∧ Jf2KC
Jf1 ∨ f2KC = Jf1KC ∨ Jf2KC

JD〈f1, f2〉KC =


Jf1KC C(D) = true

Jf2KC C(D) = false

D〈Jf1KC , Jf2KC〉 C(D) = ⊥

(b) Configuration semantics of VPL.

D〈f, f〉 ≡ f IDEMP

D〈D〈f1, f2〉, f3〉 ≡ D〈f1, f3〉 DOM-L

D〈f1,D〈f2, f3〉〉 ≡ D〈f1, f3〉 DOM-R

D1 〈D2 〈f1, f2〉,D2 〈f3, f4〉〉 ≡ D2 〈D1 〈f1, f3〉,D1 〈f2, f4〉〉 SWAP

D〈¬f1,¬f2〉 ≡ ¬D〈f1, f2〉 NEG

D〈f1 ∨ f3, f2 ∨ f4〉 ≡ D〈f1, f2〉 ∨ D〈f3, f4〉 OR

D〈f1 ∧ f3, f2 ∧ f4〉 ≡ D〈f1, f2〉 ∧ D〈f3, f4〉 AND

D〈f1 ∧ f2, f1〉 ≡ f1 ∧ D〈f2,T〉 AND-L

D〈f1 ∨ f2, f1〉 ≡ f1 ∨ D〈f2,F〉 OR-L

D〈f1, f1 ∧ f2〉 ≡ f1 ∧ D〈T, f2〉 AND-R

D〈f1, f1 ∨ f2〉 ≡ f1 ∨ D〈F, f2〉 OR-R

(c) VPL equivalence laws.

Figure 3.1: Formal definition of VPL.
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3.2 Semantics

Conceptually, a variational formula represents several propositional logic formulas at

once, which can be obtained by resolving all of the choices. For software product-line

researchers, it is useful to think of VPL as analogous to #ifdef-annotated C2, where

choices correspond to a disciplined [87] application of #ifdef annotations. From a

logical perspective, following the many-valued logic of Kleene [78, 109], the intuition

behind VPL is that a choice is a placeholder for two equally possible alternatives that is

deterministically resolved by reference to an external environment. In this sense, VPL

deviates from other many-valued logics, such as modal logic [59], because a choice

waits until there is enough information in an external environment to choose an alterna-

tive (i.e., until the formula is configured).

The configuration semantics of VPL is given in Fig. 3.1b and describes how choices

are eliminated from a formula. The semantics is parameterized by a configuration C,

which is a partial function from dimensions to Boolean values. The first four cases of the

semantics simply propagate configuration down the formula, terminating at the leaves.

The case for choices is the interesting one: if the dimension of the choice is defined in the

configuration, then the choice is replaced by its left or right alternative corresponding to

the associated value of the dimension in the configuration. If the dimension is undefined

in the configuration, then the choice is left intact and configuration propagates into the

choice’s alternatives.

If a configuration C eliminates all choices in a formula f , we call C total with respect

to f . If C does not eliminate all choices in f (i.e., a dimension used in f is undefined
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in C), we call C partial with respect to f . We call a choice-free formula plain, and call

the set of all plain formulas that can be obtained from f (by configuring it with every

possible total configuration) the variants of f .

To illustrate the semantics of VPL, consider the formula p ∧ A〈q, r〉, which has two

variants: p ∧ q when C(A) = true and p ∧ r when C(A) = false. From the seman-

tics, it follows that choices in the same dimension are synchronized while choices in

different dimensions are independent. For example, A〈p, q〉 ∧ B〈r, s〉 has four variants,

while A〈p, q〉 ∧ A〈r, s〉 has only two (p ∧ r and q ∧ s). It also follows from the se-

mantics that nested choices in the same dimension contain redundant alternatives; that

is, inner choices are dominated by outer choices in the same dimension. For exam-

ple, A〈p,A〈r, s〉〉 is equivalent to A〈p, s〉 since the alternative r cannot be reached by

any configuration. As the previous example illustrates, the representation of a VPL

formula is not unique; that is, the same set of variants may be encoded by different

formulas. Fig. 3.1c defines a set of equivalence laws for VPL formulas. These laws

follow directly from the configuration semantics in Fig. 3.1b and can be used to derive

semantics-preserving transformations of VPL formulas. For example, we can simplify

the formula A〈p∨ q, p∨ r〉 by first applying the OR law to obtain A〈p, p〉∨A〈q, r〉, then

applying the IDEMP law to the first argument to obtain p∨A〈q, r〉 in which the redundant

p has been factored out of the choice.
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3.3 Formalisms

Having defined the syntax and semantics of VPL the rest of this chapter will define

useful functions and properties. We conclude the chapter with an example of encoding

a set of C2 formulas to a single VPL formula. First define useful functions to retrieve

interesting aspects of VPL formulas.

Definition 3.3.1 (Dimensions). Given a formula f ∈ VPL, let Dimensions(f ) be the

set of unique dimensions in the formula: Dimensions(f ) = {D | D ∈ f}.

For example, Dimensions(A〈p, q〉 ∧ B〈r , s〉) = {A,B} and Dimensions(A〈p, q〉 ∧ A〈r , s〉)

= {A}. Similarly we define a notion of cardinality over VPL formulas.

Definition 3.3.2 (Dimension-cardinality). The dimension-cardinality of a formula f ∈

VPL is the cardinality of the set of unique dimensions in a formula. We use the following

notation as shorthand: |f |D = |Dimensions(f )|.

Similarly to Dimensions it is useful to have projections from a VPL formula to

possible variants:

Definition 3.3.3 (Variants). Given a formula f ∈ VPL, let Variants(f) be the set of all

possible variants of f . Thus, Variants(f) = { v | ∃C. JfKC = v }

and we can define a projection for all plain variants as well:

Definition 3.3.4 (C2 Variants). Given a formula f ∈ VPL, let VariantsC2(f) be the set

of all possible plain variants of f . Thus, VariantsC2(f) = { v | ∃C. JfKC = v, v ∈

C2 }
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Using Dimensions we can define a more precise property on configurations.

Definition 3.3.5 (Minimal Configuration). We say a configuration C is minimal with

respect to some formula f ∈ VPL if and only if JfKC = v where v ∈ VariantsC2(f)

and @C ′. JfKC ′ = v and |C ′| < |C|.

Note if f is plain then f = v and C = ∅ but is still minimal. One may think of

a minimal configuration as a total configuration with nothing extra. For example, the

configuration C = {(A, true), (B , false), (E , true)} is total with respect to the formula

f = A〈p, q〉∧B〈r, s〉 because C eliminates all choices in f . However C is not minimal

with respect to f because there exists a configuration C ′ = {(A, true), (B, false)} that

is total, produces the same variant and is smaller, i.e., |C ′| < |C|. Similarly, consider a

formula such as A〈p,B〈q , r〉〉 where the minimal configuration changes depending on

the variant. In this case, the configuration C = {(A, true), (B, false)} is not minimal

for the {(A, true)} variant, however C = {(A, true)} is, but C is minimal for every

{(A, false)} variant.

With these functions and definitions we can prove that VPL reduces to C2:

Theorem 3.3.1 (VPL reducible to C2). For any configuration C and any formula f ∈

VPL, if C is total with respect to f , then JfKC ∈ C2

Proof. This follows directly from the semantics of configuration in Fig. 3.1b, the defi-

nition of a total configuration, and that the semantics of configuration are deterministic.

The proof is by structural induction on f and case analysis. The only interesting case

is the case for choices. Since C is total we have C : D → B instead of C : D → B⊥,
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thus the last case for choices, where C (D) = ⊥, can never happen and therefore con-

figuration of a formula f with a total configuration is a total function. The other base

case is over terminals, which are in C2 by definition, and each other case propagate the

total configuration to a base case. Thus each choice and its’ alternatives are recursively

reified for f , and by definition a VPL formula which lacks choices is ∈ C2.

3.4 Example

To demonstrate the application of VPL and conclude the chapter, we encode the incre-

mental solving example from Chapter 2. Our goal is to construct a single variational

formula that encodes the related plain formulas p, q , r . Ideally, this variational formula

should maximize sharing among the plain formulas in order to avoid redundant analyses

during variational solving. We reproduce the formulas below for convenience:

p = a ∧ b ∧ c ∧ e q = a ∧ (b ∨ ¬i) ∧ c ∧ (g → c) r = z ↔ (a ∧ b ∧ c ∧ e)

Every set of plain formulas can be encoded as a variational formula systematically

by first constructing a nested choice containing all of the individual variables as al-

ternatives, then factoring out shared subexpressions by applying the laws in Fig. 3.1c.

Unfortunately, the process of globally minimizing a variational formula in this way is

hard1 since we must apply an arbitrary number of laws right-to-left in order to set up a

particular sequence of left-to-right applications that factor out commonalities.

1. We hypothesize that it is equivalent to BDD minimization, which is NP-hard, but the equivalence
has not been proved; see [134].
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Due to the difficulty of minimization, we instead demonstrate how one can build

such a formula incrementally. Our variational formula will use the dimensions P , Q, R

to represent the respective variants. Unique portions of each variant will be nested into

the left alternative so that the unique portion is considered when the dimension is bound

to true in the configuration.

We begin by combining p and r since the differences2 between the two are smaller

than between other pairs of propositions in our example. Propositional formulas may

be combined in any order as long as the variants in the resulting formula correspond to

their plain counterparts. The only change between p and r is the addition of z and thus

we wrap the leaf in a choice with dimension R. This yields the following variational

formula.

fpr = R〈z ,T〉 ↔ (a ∧ b ∧ c ∧ e)

We exploit the fact that ∧ forms a monoid with T to recover a formula equivalent to p

for configurations where R is false.

Next we combine fpr with q to obtain a variational formula that encodes the propo-

sitional formulas p, q , r . There are two sub-trees that must be wrapped in choices.

First, we must encode the difference between b∨¬i from q and b. Second, we must en-

sure synchronization and thus use the same dimension to encode the difference between

g → c and e. Thus the resulting variational formula is:

f = R〈z ,T〉 ↔ (a ∧Q〈b ∨ ¬i, b〉 ∧ c ∧Q〈g → c, e〉)
2There are many ways to assess the difference of two formulas. For now the reader may consider it

reducible to the Levenshtein distance of two strings [86]. We return to this discussion in Section 8.2.



27

Now that we have constructed the variational formula we need to ensure that it encodes

all variants of interest and nothing else. Notice that only 2 dimensions are used to encode

3 variants, because |f |D = 2 we have are 4 possible variants and thus one extra variant.

We can observe this by enumerating the variants and possible configurations:

p = T↔ (a ∧ b ∧ c ∧ e) C = {(R, false), (Q, false)}

q = T↔ (a ∧ (b ∨ ¬i) ∧ c ∧ (g → c)) C = {(R, false), (Q, true)}

r = z ↔ (a ∧ b ∧ c ∧ e) C = {(R, true), (Q, false)}

extra = z ↔ (a ∧ (b ∨ ¬i) ∧ c ∧ (g → c)) C = {(R, true), (Q, true)}

Notice the extra variant and that p and q are only recovered through equivalency

laws from propositional logic. While it is undesirable that there exists extra variants, the

important constraint: {p, q , r} ⊆ VariantsC2(f) is satisfied. We’ll return to the case of

extra variants in the next chapter by showing how to prevent a variational SAT solver

from solving these variants.
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Chapter 4: Variational Satisfiability Solving

This chapter presents the variational satisfiability solving algorithm as a compiler. First

we formalize the variational satisfiability problem. Next we present a general overview

of the solving algorithm in Section 4.1. Section 4.1 describes the algorithm in terms of

communication between four subsystems, introduces the concept of variational cores,

and the intermediate language that each subsystem operates on. Each of these subsys-

tems process the intermediate representation in a combination of phases which are cov-

ered in detail in the following sections, including examples of the compiled SMTLIB2

output. We conclude the chapter with Section 4.5. Section 4.5 presents inference rules

to specify the behavior of an abstract variational satisfiability solver by formalizing the

interplay between these phases, and thus the interplay between the subsystems.

Now that we have defined VPL, we can define the variational satisfiability problem.

Like the Boolean satisfiability problem, the variational satisfiability problem is con-

cerned with checking satisfiability, only in this case we want to check satisfiability of

all plain variants. Thus, we define the problem as finding a partition in the configuration

space of a formula in VPL.

Definition 4.0.1 (Variational Satisfiability Problem). For a VPL formula f . Let C ∗ be

the set of all total configurations of f . Find a partition (S ,U ) of C ∗ such that Jf KC is

satisfiable⇔ C ∈ S .

We say a VPL formula f is satisfiable if S 6= ∅, f is totally satisfiable if U = ∅, and
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Figure 4.1: System overview of the variational solver.

f is unsatisfiable if S = ∅. Rather than return the partition of all total configurations,

our variational satisfiability algorithm defines and returns variational models. We define

these models in Section 4.4.

4.1 General Approach

VPL formulas are solved recursively, decoupling the handling of plain terms from the

handling of variational terms. The intuition behind the algorithm is to first process as

many plain terms as possible (e.g. by pushing those terms to the underlying solver)

while skipping choices, yielding a variational core that represents only the variational

parts of the original formula. We then alternate between configuring choices in the

variational core and processing the new plain terms produced by configuration until the

entire term has been consumed. A variant in of the original VPL formula is found every
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time the entire term is consumed since all choices will have been configured. Once a

variant has been found the algorithm queries the underlying solver to obtain a model,

then backtracks to solve a different variant by configuring the same choices differently.

The models for each variant are combined into a single variational model that captures

the result of solving all variants of the original VPL formula. Crucially, building a

variational model is associative, and thus the order the variants’ models are found is not

important to the correctness of the final model.

We present an overview of the variational solver as a state diagram in Fig. 4.1 that

operates on the input’s abstract syntax tree. Labels on incoming edges denote inputs

to a state and labels on outgoing edges denote return values; we show only inputs for

recursive edges; labels separated by a comma share the edge. We omit labels that can

be derived from the logical properties of connectives, such as commutativity of ∨ and

∧. Similarly, we omit base case edge labels for choices and describe these cases in the

text.

The solver has four subsystems: The reduction engine processes plain terms and

generates the variational core, which is ready for reification. The reification engine

configures choices in a variational core. The base solver is the incremental solver used

to produce plain models. Finally, the variational model constructor synthesizes a single

variational model from the set of plain models returned by the base solver.

The solver takes a VPL formula called a query formula and an optional input called

a variation context (vc). A vc is a propositional formula of dimensions that restricts

the solver to a subset of variants, thus prevents computation on extra variants. The

variational solver translates the query formula to a formula in an intermediate language



31

Query
formula

to IL Evaluation

AccumulationBase
Solver

r, s
, t

¬v, v
1 ∨ v

2

v1 ∧ v2 s, v1 ∨ v2, v1 ∧ v2

¬v, v1 ∨ v2,
v1 ∧ v2

r, ¬s, s1 ∨ s2,
s1 ∧ s2

s, v
1 ∧ v

2 ,
v
1 ∨

v
2

•

VCore

Figure 4.2: Overview of the reduction engine.

(IL) that the reduction and reification engines operate over. The syntax of the IL is given

below.

v ::= • | t | r | s | ¬v | (v ∧ v) | v ∨ v | D〈e, e〉

The IL includes two kinds of terminals not present in the input query formulas: plain

subterms that can be reduced symbolically will be replaced by a reference to a symbolic

value s, and subterms that have been sent to the base solver will be represented by the

unit value •. Note that choices contain unprocessed expressions (e) as alternatives.

4.2 Derivation of a Variational Core

A variational core is an IL formula that captures the variational structure of a query

formula. Plain terms will either be placed on the assertion stack or will be symbolically

reduced, leaving only logical connectives, symbolic references, and choices.
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The variational core for a VPL formula is computed by a reduction engine illustrated

in Fig. 4.2. The reduction engine has two states: evaluation, which communicates to the

base solver to process plain terms, and accumulation, which is called by evaluation to

create symbolic references and reduce plain formulas.

To illustrate how the reduction engine computes a variational core, consider the

query formula f = ((a ∧ b) ∧ A〈e1, e2〉) ∧ ((p ∧ ¬q) ∨ B〈e3, e4〉). Translated to an

IL formula, f has four references (a, b, p, q) and two choices. The reduction engine will

ultimately produce a variational core that asserts (a∧ b) in the base solver, thus pushing

it onto the assertion stack, and create a symbolic reference for (p ∧ ¬q).

Generating the core begins with evaluation. Evaluation matches on the root ∧ node

of f and recurs following the v1 ∧ v2 edge, where v1 = (a ∧ b) ∧ A〈e1, e2〉 and v2 =

(p∧¬q)∨B〈e3, e4〉. The recursion processes the left child first. Thus, evaluation again

matches on ∧ of v1 creating another recursive call with v′1 = (a∧ b) and v′2 = A〈e1, e2〉.

Finally, the base case is reached with a final recursive call where v′′1 = a, and v′′2 = b.

At the base case, both a and b are references, so evaluation sends a to the base solver

following the r , s , t edge, which returns • for the left child. The right child follows the

same process yielding •∧•. Since the assertion stack implicitly conjuncts all assertions,

• ∧ • will be further reduced to • and returned as the result of v′1, indicating that both

children have been pushed to the base solver. This leaves v′1 = • and v′2 = A〈e1, e2〉. v′2

is a base case for choices and cannot be reduced in evaluation, so • ∧ A〈e1, e2〉 will be

reduced to just A〈e1, e2〉 as the result for v1.

In evaluation, conjunctions can be split because of the behavior of the assertion stack

and the and-elimination property of ∧. Disjunctions and negations cannot be split in this
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way because both cannot be performed if a child node has been lost to the solver, e.g.,

¬ • . Thus, in accumulation, we construct symbolic terms to represent entire subtrees,

which ensures information is not lost while still allowing for the subtree to be evaluated

if it is sound to do so.

The right child, v2 = (p ∧ ¬q) ∨ B〈e3, e4〉 requires accumulation. Evaluation will

match on the root ∨ and send (p ∧ ¬q) ∨ B〈e3, e4〉 to accumulation via the v1 ∨ v2

edge. Accumulation has two self-loops, one to create symbolic references (with labels

r, s, . . .), and one to recur to values. Accumulation matches the root ∨ and recurs on the

self-loop with edge v1∨v2, where v1 = (p∧¬q) and v2 = B〈e3, e4〉. Processing the left

child first, accumulation will recur again with v′1 = p and v′2 = ¬q. v′1 = p is a base case

for references, so a unique symbolic reference sp is generated for p following the self-

loop with label r and returned as the result for v′1. v
′
2 will follow the self-loop with label

¬v to recur through ¬ to q, where a symbolic term sq will be generated and returned.

This yields ¬sq, which follows the ¬s edge to be processed into a new symbolic term,

yielding the result for v′2 as s¬q. With both results v1 = sp∧s¬q, accumulation will match

on ∧ and both sp and s¬q to accumulate the entire subtree to a single symbolic term, spq,

which will be returned as the result for v1. v2 is a base case, so accumulation will return

spq∨B〈e3, e4〉 to evaluation. Evaluation will conclude with A〈e1, e2〉 as the result for the

left child of ∧ and spq ∨B〈e3, e4〉 for the right child, yielding A〈e1, e2〉∧ spq ∨B〈e3, e4〉

as the variational core of f .

A variational core is derived to save redundant work. If solved naively, plain sub-

formulas of f , such as a ∧ b and p ∧ ¬q, would be processed once for each variant

even though they are unchanged. Evaluation moves sub-formulas into the solver state to
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be reused among different variants. Accumulation caches sub-formulas that cannot be

immediately evaluated to be evaluated later.

Symbolic references are variables in the reduction engine’s memory that represent a

set of statements in the base solver.1 For example, spq represents three declarations in

the base solver:

(declare-const p Bool)
(declare-const q Bool)
(declare-fun spq () Bool (and p (not q)))

Similarly a variational core is a sequence of statements in the base solver with holes

♦. For example, the variational core of f would be encoded as:

(assert (and a b)) ; ; add a ∧ b to the assertion stack
(declare-const ♦) ; ; choice A

... ; ; potentially many declarations and assertions
(declare-fun spq () Bool (and p q)) ;; get symbolic reference for spq
(declare-const ♦) ; ; choice B

... ; ; potentially many declarations and assertions
(assert (or sab ♦)) ; ; assert waiting on JB〈e3, e4〉KC

Each hole is filled by configuring a choice and may require multiple statements to pro-

cess the alternative.

4.3 Solving the Variational Core

The reduction engine performs the work at each recursive step whereas the reification

engine defines transitions between the recursive steps by manipulating the configuration.

In Chapter 3, we formalized a configuration as a function D → B, which we encode in

1Note that while we use SMTLIB2 as an implementation target, any solver that exposes an incremental
API as defined by minisat [102] can be used to implement variational satisfiability solving.
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the solver as a set of tuples {D × B}. Fig. 4.1 shows two loops for the reification engine

corresponding to the reification of choices. The edges from the reification engine to the

reduction engine are transitions taken after a choice is removed, where new plain terms

have been introduced and thus a new core is derived. If the user supplied a variation

context, then it is used to check that the binding of a Boolean value to a dimension is

valid in the variation context. For example, vc = ¬A would prevent any configura-

tions where (A, true) ∈ C. Finally, a model is retrieved from the base solver when the

reduction engine returns •, indicating that a variant has been reached.

We show the edges of the reification engine relating to the ∧ connective; the edges

for the ∨ connective are similar. The left edge is taken when a choice is observed in

the variational core: v ∧ JD〈e1, e2〉KC and D ∈ C. This edge reduces choices with

dimension D to an alternative, which is then translated to IL. The right edge is dashed

to indicate assertion stack manipulation and is taken when D /∈ C. For this edge, the

configuration is mutated for both alternatives: C ∪ {(D, true)} and C ∪ {(D, false)},

and the recursive call is wrapped with a PUSH and POP command. To the base solver, this

branching appears as a linear sequence of assertion stack manipulations that performs

backtracking behavior. For example, the representation of f is:
... ; ; declarations and assertions from variational core

(push 1) ; ; a configuration on B has occurred
... ; ; new declarations for left alternative

(declare-fun s () Bool (or spq ♦[♦→ sBT
])) ;; fill

(assert s)
... ; ; recursive processing

(pop 1) ; ; return for the right alternative
(push 1) ; ; repeat for right alternative

Where the hole ♦, will be filled with a newly defined variable sDT
that represents the
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left alternative’s formula.

4.4 Variational Models

Classic SAT models map variables to Boolean values; variational models map variables

to variation contexts that record the variants where the variable was assigned T. The

variational context for a variable r in a variational model is denoted as vcr. A vari-

ational model reserves a special variable called _Sat to track the configurations that

were found satisfiable. We use the notation M f
v to mean the variational model pro-

duced by solving a variational formula f , and M f
v (C) to mean the plain model which

results from substitution of a configuration C into the variational model M f
v . As an

a → T
b → F
c → T
p → T
q → F

CFF = {(A, F), (B , F)}

a → T
b → F
c → T
p → T
q → F

CFT = {(A, F), (B , T)}

a → T
b → F

p → F
q → T

CTT = {(A, T), (B , T)}

Figure 4.3: Possible plain models for variants of f .

_Sat→ (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B)
a → (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B)
b → F
c → (¬A ∧ ¬B) ∨ (¬A ∧ B)
p → (¬A ∧ ¬B) ∨ (¬A ∧ B)
q → (A ∧ B)

Figure 4.4: Variational model corresponding to the plain models in Fig. 4.3.

example, consider an altered version of the query formula from the previous section
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f = ((a ∧ ¬b) ∧ A〈a → ¬p, c〉) ∧ ((p ∧ ¬q) ∨ B〈q , p〉). We can easily see that

one variant, with configuration {(A,T), (B ,F)} is unsatisfiable. If the remaining vari-

ants are satisfiable, then three models would result, as illustrated in Fig. 4.3; with the

corresponding variational model shown in Fig. 4.4.

We see that vc_Sat
consists of three disjuncted terms, one for each satisfiable vari-

ant. Variational models are flexible; a satisfiable assignment of the query formula can

be found by calling SAT on vc_Sat
. Assuming the model CFT = {(A,F), (B ,T)} is

returned, one can find a variable’s value through substitution with the configuration; for

example, substituting the returned model on vcc yields:

c → (¬A ∧ ¬B) ∨ (¬A ∧ B) vc for c

c → (¬F ∧ ¬T) ∨ (¬F ∧ T) Substitute F for A, T for B

c → T Result

Furthermore, finding variants where a variable such as c is satisfiable is reduced to

SAT (vcc)

Variational models are constructed incrementally by merging each new plain model

returned by the solver into the variational model. A merge requires the current configu-

ration, the plain model, and current vc of a variable. Variables are initialized to F. For

each variable i in the model, if i’s assignment is T in the plain model, then the configu-

ration is translated to a variation context and disjuncted with vci. For example, to merge

the CFT ’s plain model to the variational model in Fig. 4.4, CFT ’s configuration is con-

verted to ¬A ∧ B . This clause is disjuncted for variables assigned T in the plain model:
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vca , vcc , and vcp , even if they are new (e.g., c). Variables assigned F are skipped, thus

vcq remains F. For example, in the next model CTT , c is F thus vcc remains unaltered,

while vcq flips to T hence vcq records A∧B . Variables such as b, whose vc’s stay F are

called constant.

Variational models are constructed in disjunctive normal form (DNF), and form a

monoid with ∨ as the semigroup operation, and F as the unit value. We note this for

mathematically inclined readers and those looking to implement their own variational

solver because it is an important property for asynchronous implementations of varia-

tional satisfiability solvers.

4.5 Formalization

In this section we formalize variational SAT solving by specifying the semantics of the

accumulation and evaluation phases of the variational solver, as well as the semantics of

processing the variational core, which we call choice removal. Variational SAT solving

assumes the existence of an underlying incremental SAT solver, which we refer to as the

base solver.

The variational solver interacts with the base solver via several primitive operations.

In our semantics, we simulate the effects of these primitive operations by tracking their

effects on two stores. The accumulation store ∆ tracks values cached during accumu-

lation by mapping IL terms to symbolic references. The evaluation store Γ tracks the

symbolic references that have been sent to the base solver during evaluation.
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Not : (∆, s) → (∆, s) Negate a symbolic value
And : (∆, s, s) → (∆, s) Conjunction of symbolic values
Or : (∆, s, s) → (∆, s) Disjunction of symbolic values
Var : (∆, r) → (∆, s) Create symbolic value based on a variable

Assert : (Γ,∆, s) → Γ Assert a symbolic value to the solver
GetModel : (Γ,∆) → m Get a model for the current solver state

Figure 4.5: Assumed base solver primitive operations.

4.5.1 Primitives

Fig. 4.5 lists a minimal set of primitive operations that the base solver is assumed to

support. These primitive operations define the interface between the base solver and the

variational solver.

The primitive operations can be roughly grouped into two categories: The first four

operations, consisting of the logical operations Not, And, and Or, plus the Var opera-

tion, are used in the accumulation phase and are concerned with creating and maintain-

ing symbolic references that may stand for arbitrarily complex subtrees of the original

formula. These operations simulate caching information in the base solver. The final

two operations, Assert and GetModel, are used in the evaluation phase and simu-

late pushing new assertions to the base solver and obtaining a satisfiability model based

on the current solver state, respectively.

It’s important to note that our primitive operations are pure functions and do not sim-

ulate interacting with the base solver via side effects. The effect of a primitive operation

can be determined by observing its type. For example, the Assert operation pushes

new assertions to the base solver. This is reflected in its type, which includes an evalua-

tion store as input and produces a new evaluation store (with the assertion included) as
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output. Since evaluation stores are immutable, we do not need a primitive operation to

simulate popping assertions from the base solver. Instead, we simulate this by directly

reusing old evaluation stores.

Many of the primitive operations operate on references to symbolic values. Such

symbolic references may stand for arbitrarily complex subtrees of the original formula,

built up through successive calls to the corresponding primitive operations. For example,

recall the example formula p∧¬q from Section 4.1, which was replaced by the symbolic

value spq after the following sequence of smtlib declarations.

(declare-const p Bool)
(declare-const q Bool)
(declare-fun spq () Bool (and p (not q)))

In our formalization, we would represent this same transformation of the formula p∧¬q

into a symbolic reference spq using the following sequence of primitive operations:

Var(∆0, p) = (∆1, sp)

Var(∆1, q) = (∆2, sq)

Not(∆2, sq) = (∆3, s
′
q)

And(∆3, sp, s
′
q) = (∆4, spq)

The accumulation store tracks what information is associated with each symbolic ref-

erence. The store must therefore be threaded through the calls to each primitive op-

eration so that subsequent operations have access to existing definitions and can pro-

duce a new, updated store. For example, the final store produced by the above ex-

ample contains the following mappings from IL terms to symbolic references, ∆4 =
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Var(∆, r) =

{
(∆, s) (r, s) ∈ ∆

Var(∆, r) otherwise

Not(∆, s) =

{
(∆, s′) (¬s, s′) ∈ ∆

Not(∆, s) otherwise

And(∆, s1, s2) =

{
(∆, s3) (s1 ∧ s2, s3) ∈ ∆

And(∆, s1, s2) otherwise

Or(∆, s1, s2) =

{
(∆, s3) (s1 ∨ s2, s3) ∈ ∆

Or(∆, s1, s2) otherwise

Figure 4.6: Wrapped accumulation primitive operations.

{(p, sp), (q, sq), (¬sq, s′q), (sp ∧ s′q, spq)}.

When comparing the SMTLIB2 notation to our formalization, observe that each use

of declare-const corresponds to a use of the Var primitive, while the declare-fun line

in smtlib may potentially expand into several primitive operations in our formalization.

For the evaluation primitives, the Assert operation corresponds to an smtlib assert

call, while the GetModel operation corresponds roughly to an smtlib check-sat call,

which retrieves a model for the current set of assertions on the stack. However, the exact

semantics of check-sat depends on the base solver in use. For example, given the plain

formula p = a ∨ b ∨ c, z3 returns only a minimal satisifiable model, such as {b = T},

providing no values for the other variables in the formula. To normalize this behavior

across solvers, we instead consider GetModel equivalent to check-sat followed by a

get-value call call for every variable in the query formula, yielding a complete model.

For example, a complete model for p would be {a = F, b = T, c = F}.
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Finally, in Fig. 4.6 we define wrapped versions of the primitive operations used in

accumulation. These wrapper functions first check to see whether a symbolic reference

for the given IL term exists already in the accumulation store, and if so, returns it with-

out changing the store. Otherwise, it invokes the corresponding primitive operation to

generate and return the new symbolic reference and updated store.

4.5.2 Accumulation

The accumulation phase is formally specified in Fig. 4.7 as a relation of the form

(∆, v) 7→ (∆′, v′). Accumulation replaces plain subterms of the formula with refer-

ences to symbolic values, wherever possible. The replacement of subterms by symbolic

references is achieved by the first four rules in the figure. In the A-REF rule, a vari-

able reference is replaced by a symbolic reference by invoking the wrapped version of

the Var primitive, which returns the corresponding symbolic reference or generates a

new one, if needed. The A-NOT-S, A-AND-S, and A-OR-S rules all similarly replace

an IL term by a symbolic reference by invoking the corresponding wrapped primitive

operation. These rules all require that their subterms completely reduce to symbolic ref-

erences, as illustrated by the premise (∆, v) 7→ (∆′, s) in the A-NOT-S rule, otherwise

the primitive operation cannot be invoked.

However, not all subterms can be completely reduced to symbolic references. In par-

ticular, variational subterms—subterms that contain one or more choices within them—

cannot be accumulated to a symbolic reference. The A-CHC rule prevents accumula-

tion under a choice. The A-NOT-V, A-AND-V, and A-OR-V rules are congruence rules
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Var(∆, r) = (∆′, s)

(∆, r) 7→ (∆′, s)
A-REF

(∆, v) 7→ (∆′, s) Not(∆′, s) = (∆′′, s′)

(∆,¬v) 7→ (∆′′, s′)
A-NOT-S

(∆, v1) 7→ (∆1, s1)
(∆1, v2) 7→ (∆2, s2) And(∆2, s1, s2) = (∆3, s3)

(∆, v1 ∧ v2) 7→ (∆3, s3)
A-AND-S

(∆, v1) 7→ (∆1, s1) (∆1, v2) 7→ (∆2, s2) Or(∆2, s1, s2) = (∆3, s3)

(∆, v1 ∨ v2) 7→ (∆3, s3)
A-OR-S

(∆,D〈e1, e2〉) 7→ (∆,D〈e1, e2〉)
A-CHC

(∆, v) 7→ (∆′, v′)

(∆,¬v) 7→ (∆′,¬v′)
A-NOT-V

(∆, v1) 7→ (∆1, v
′
1) (∆1, v2) 7→ (∆2, v

′
2)

(∆, v1 ∧ v2) 7→ (∆2, v
′
1 ∧ v′2)

A-AND-V

(∆, v1) 7→ (∆1, v
′
1) (∆1, v2) 7→ (∆2, v

′
2)

(∆, v1 ∨ v2) 7→ (∆2, v
′
1 ∨ v′2)

A-OR-V

Figure 4.7: Accumulation inference rules.
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that recursively apply accumulation to subterms. Although not explicitly stated in the

premises, it is assumed that these A-*-V rules apply only if the corresponding A-*-S rule

does not apply, that is, when at least one of the subterms does not reduce completely to

a symbolic reference.

We have omitted rules for processing the constant values T and F. These rules cor-

respond closely to the A-REF rule, but use a predefined variable reference for the true

and false constants.

To illustrate the semantics of accumulation, consider the plain formula g = a ∨

(a ∧ b) with an initial accumulation store ∆ = ∅. The A-OR-S rule matches the root

∨ connective with v1 = a and v2 = a ∧ b. Since v1 is a reference, the A-REF rule

applies, generating a new symbolic reference sa and returning the store ∆1 = {(a, sa)}.

Processing v2 requires an application of the A-AND-S rule with v′1 = a and v′2 = b, both

of which require another application of the A-REF rule. For v′1, the variable a is found in

the store returning sa, while for v′2, a new symbolic reference sb is generated and added

to the resulting store ∆2 = {(a, sa), (b, sb)}. Since both the left and right sides of v2

reduce to a symbolic reference, the And primitive is invoked, yielding a new symbolic

reference sab and the store ∆3 = {(a, sa), (b, sb), (a ∧ b, sab)}. Finally, since both the

left and right sides of the original formula g reduce to symbolic references, the Or

primitive is invoked yielding the final symbolic reference sg and the final accumulation

store ∆4 = {(a, sa), (b, sb), (sa ∧ sb, sab)(sa ∨ sab, sg)}.

When a formula contains choices, all of the plain subterms surrounding the choices

are accumulated to symbolic references, but choices remain in place and their alterna-

tives are not accumulated. For example, consider the variational formula g′ = (a∨ (a∧
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(∆, v) 7→ (∆′, v′) (Γ,∆′, v′)� (Γ′,∆′′, v′′)

(Γ,∆, v)� (Γ′,∆′′, v′′)
E-ACC

Assert(Γ,∆, s) = Γ′

(Γ,∆, s)� (Γ′,∆, •)
E-SYM

(Γ,∆,D〈e1, e2〉)� (Γ,∆,D〈e1, e2〉)
E-CHC

(Γ,∆, v1 ∨ v2)� (Γ,∆, v1 ∨ v2)
E-OR

(Γ,∆, v1)� (Γ1,∆1, •) (Γ1,∆1, v2)� (Γ2,∆2, v
′
2)

(Γ,∆, v1 ∧ v2)� (Γ2,∆2, v
′
2)

E-AND-L

(Γ,∆, v1)� (Γ1,∆1, v
′
1) (Γ1,∆1, v2)� (Γ2,∆2, •)

(Γ,∆, v1 ∧ v2)� (Γ2,∆2, v
′
1)

E-AND-R

(Γ,∆, v1)� (Γ1,∆1, v
′
1) (Γ1,∆1, v2)� (Γ2,∆2, v

′
2)

(Γ,∆, v1 ∧ v2)� (Γ2,∆2, v
′
1 ∧ v′2)

E-AND

Figure 4.8: Evaluation inference rules.

b)) ∨ D〈a, a ∧ b〉 ∧ (a ∨ (a ∧ b)) which contains two instances of g as subterms. The

formula g′ accumulates to the variational core sg ∨D〈a, a ∧ b〉 ∧ sg with the same final

store ∆4 produced when accumulating g alone. Note that the each instance of g in g′

was reduced to the same symbolic reference sg and the alternatives of the choice were

not reduced.

4.5.3 Evaluation

The evaluation phase is formally specified in Fig. 4.8 as a relation of the form (Γ,∆, v)�

(Γ′,∆′, v′), where an evaluation store Γ represents the base solver’s state. The E-ACC

and E-SYM rules are the heart of evaluation: the E-ACC rule enables accumulating sub-
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terms during evaluation, while the E-SYM rule sends a fully accumulated subterm to the

base solver. Evaluation cannot occur under choices or un-accumulated disjunctions (i.e.

disjunctions that contain choices), as seen in the E-CHC and E-OR rules, but can occur

under un-accumulated conjunctions, as reflected by the three E-AND* rules. This will

be explained in more detail below.

When a subterm is sent to the base solver by E-SYM, it is replaced by the unit value

• and the evaluation store Γ is updated accordingly. Conceptually, the evaluation store

represents the internal state of the underlying solver (e.g. z3’s internal state), but we

model it formally as the set of assertions that have been sent to the solver. For ex-

ample, given the accumulation store ∆ = {(a, sa), (b, sb), (sa ∧ sb, sab)}, the assertion

Assert({},∆, sa) yields {sa} and subsequent assertions add more elements to this set,

for example, Assert({sa},∆, sab) = {sa, sab}. The assertions sent to a SAT solver are

implicitly conjuncted together, which is why partially accumulated conjunctions may

still be evaluated, but partially accumulated disjunctions may not. Such disjunctions are

instead handled during choice removal using back-tracking.

The three E-AND* rules propagate accumulation over conjunctions. In all three rules,

the subterms are evaluated left-to-right, propagating the resulting stores accordingly.

The E-AND-L rule states that if the left side of a conjunction can be fully evaluated to •,

then the expression can be evaluated to the result of the right side; likewise, E-AND-R

states that if the right side fully evaluates, the result of evaluating the expression is the

result of the left side. If neither side fully evaluates to • (i.e. because both contain

choices or disjunctions), then E-AND applies, which leaves the conjunction in place

(with evaluated subterms) to be handled during choice removal.
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Consider evaluating the formula g = (a ∨ b) ∧ D〈a, c〉 with initially empty stores.

We start by applying accumulation using the E-ACC rule, yielding the intermediate term

g′ = sab ∧ D〈a, c〉 with the accumulation store ∆ = {(a, sa), (b, sb), (sa ∨ sb, sab)}.

We then apply E-AND-L to g′, which sends the left subterm sab to the base solver via

the E-SYM rule, and the right side will be unevaluated via the E-CHC rule. Ultimately,

evaluation yields the expression D〈a, c〉 with accumulation store ∆ and evaluation store

{sab}.

4.5.4 Choice removal

The main driver of variational solving is the choice removal phase, which is formally

specificed in Fig. 4.9 as a relation of the form (C ,Γ,∆,M, z, v) ⇓ M ′. The main role

of choice removal is to relate an IL term v to a variational model M ′. However, to do

this requires several pieces of context including a configuration C, an evaluation store

Γ, an accumulation store ∆, an initial variational model M, and an evaluation context

z. The two stores have been explained earlier in this chapter, and variational models are

explained at the end of Section 4.1. We explain configurations and evaluation contexts

in the context of the relevant rules below.

The C-EVAL rule states that v fully evaluates to •, then we can get the current model

from the base solver using the GetModel primitive and update our variational model.

We use the operation Combine to perform the variational model update operation de-

scribed in Section 4.1. The rest of the choice removal rules are structured so that C-EVAL

will be invoked once for every variant of the variational core so that the final output will
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(Γ,∆, v)� (Γ′,∆′, •) Combine(M,GetModel(∆,Γ)) = M ′

(C ,Γ,∆,M,>, v) ⇓M ′ C-EVAL

(D, true) ∈ C (C ,Γ,∆,M, z, e1) ⇓M ′

(C ,Γ,∆,M, z,D〈e1, e2〉 ⇓M ′ C-CHC-T

(D, false) ∈ C (C ,Γ,∆,M, z, e2) ⇓M ′

(C ,Γ,∆,M, z,D〈e1, e2〉 ⇓M ′ C-CHC-F

D /∈ dom(C) (C ∪ (D, true),Γ,∆,M, z, e1) ⇓M1

(C ∪ (D, false),Γ,∆,M ′, z, e2) ⇓M2

(C ,Γ,∆,M, z,D〈e1, e2〉 ⇓M2

C-CHC

(C ,Γ,∆,M,¬ · :: z, v) ⇓M ′

(C ,Γ,∆,M, z,¬v) ⇓M ′ C-NOT

(∆,¬s) 7→ (∆′, s′) (C ,Γ,∆,M, z, s′) ⇓M ′

(C ,Γ,∆,M,¬ · :: z, s) ⇓M ′ C-NOT-IN

(C ,Γ,∆,M, · ∧ v2 :: z, v2) ⇓M ′

(C ,Γ,∆,M, z, v1 ∧ v2) ⇓M ′ C-AND

(C ,Γ,∆,M, s ∧ · :: z, v) ⇓M ′

(C ,Γ,∆,M, · ∧ v :: z, s) ⇓M ′ C-AND-INL

(∆, s1 ∧ s2) 7→ (∆′, s3) (C ,Γ,∆,M, z, s3) ⇓M ′

(C ,Γ,∆,M, s1 ∧ · :: z, s2) ⇓M ′ C-AND-INR

(C ,Γ,∆,M, · ∨ v2 :: z, v2) ⇓M ′

(C ,Γ,∆,M, z, v1 ∨ v2) ⇓M ′ C-OR

(C ,Γ,∆,M, s ∨ · :: z, v) ⇓M ′

(C ,Γ,∆,M, · ∨ v :: z, s) ⇓M ′ C-OR-INL

(∆, s1 ∨ s2) 7→ (∆′, s3) (C ,Γ,∆,M, z, s3) ⇓M ′

(C ,Γ,∆,M, s1 ∨ · :: z, s2) ⇓M ′ C-OR-INR

Figure 4.9: Choice removal inference rules
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be a variational model that encodes the solutions to every variant of the original formula.

The next three rules concern choices and are the heart of choice removal. These rules

make use of a configuration C, which maps dimensions to Boolean values (encoded as

a set of pairs). The configuration tracks which dimensions have been selected and how

to ensure that all choices in the same dimension are synchronized. Whenever a choice

D〈e1, e2〉 is encountered during choice removal, we check C to determine what to do. In

C-CHC-T, if (D, true) ∈ C, then the first alternative of the dimension has already been

selected, so choice removal proceeds on e1. Similarly, in C-CHC-F, if (D, false) ∈ C,

the right alternative has been selected, so choice removal proceeds on e2. In C-CHC, if

D /∈ dom(C), then the dimension has not yet been selected, so we recursively apply

choice removal to both e1 and e2, updating C accordingly in each case. Observe that

we use the same accumulation store, evaluation store, and evaluation context for each

alternative. This simulates a backtracking point in the solver, where we first solve e1,

then reset the state of the solver to the point where we encountered the choice and solve

e2. Only the variational model, which is threaded through the solution of both e1 and e2,

is maintained to accumulate the results of solving each alternative.

The final eight rules apply choice removal to the logical operations. These rules

make heavy use of an evaluation context z that keeps track of where we are in a partially

evaluated IL term during choice removal. Evaluation contexts are defined as a zipper

data structure [69] over IL terms, given by the following grammar.

z ::= > | ¬ · :: z | · ∧ v :: z | s ∧ · :: z | · ∨ v :: z | s ∨ · :: z
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An evaluation context z is like a breadcrumb trail that enables focusing on a subterm

within a partially evaluated IL term while also keeping track of work left to do. The

empty context > indicates the root of the term. The other cases in the grammar prepend

a “crumb” to the trail. The crumb · ¬ focuses on the subterm within a negation, · ∧ v

focuses on the left subterm within a conjunction whose right subterm is v, and v ∧

· focuses on the right subterm of a conjunction whose left subterm has already been

reduced to s. The cases for disjunction are similar to conjunction.

As an example, consider the IL term ¬(a ∨ b) ∧ c. When evaluation is focused on

a, the evaluation context will be · ∨ b :: ¬ · :: · ∧ c :: >, which states that a exists as

the left child of a disjunction whose right child is b, which is inside a negation, which

is the left child of a conjunction whose right child is c. The b and c terms captured

in the context are subterms of the original term that must still be evaluated. During

choice removal, IL terms are evaluated according to a left-to-right, post-order traversal;

as IL subterms are evaluated they are replaced by symbolic references via accumulation.

When evaluation is focused on b, the context will be sa ∨ · :: ¬ · :: · ∧ c :: >, where

sa is the symbolic reference produced by accumulating the variable a. When evaluation

is eventually focused on c, the evaluation context will be simply sab ∧ · :: > since the

entire subtree ¬(a∨ b) on the left side of the conjunction will have been accumulated to

the symbolic reference sab.

The C-NOT, C-AND, and C-OR rules define what to do when encountering a logical

operation for the first time. In C-NOT, we focus on the subterm of the negation, while in

C-AND and C-OR, we focus on the left child while saving the right child in the context.

The C-AND-INL and C-OR-INL rules define what to do when finished processing the left
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child of the corresponding operation. A fully processed child have been accumulated

to a symbolic reference s. At this point, we move the s into the evaluation context

and shift focus to the previously saved right child of the logical operation. Finally, the

C-NOT-IN, C-AND-INR, and C-OR-INR rules define what to do when finished processing

all children of a logical operation. At this point, all children will have been reduced to

symbolic references so we can accumulate the entire subterm and apply choice removal

to the result. For example, in C-AND-INR, we have just finished processing the right

child to s2 and we previously reduced the left child to s1, so we now accumulate s1 ∨ s2

to s3 and proceed from there.

Evaluation contexts support a simple recursive approach to solving variational for-

mulas by adding to the context as we move down the term and removing from the context

as we move back up. The extra effort over a more direct recursive strategy is necessary

to support the backtracking pattern implemented by the C-CHC rule. Whenever we en-

counter a choice in a new dimension, we can simply split the state of the solver to

explore each alternative. Without evaluation contexts, this would be extremely difficult

since choices may be deeply and arbitrarily nested within a variational formula. We

would have to somehow remember all of the locations in the term that we must back-

track to later and the state of the solver at each of those locations.
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Chapter 5: Variational Satisfiability-Modulo Theory Solving

We have covered the basics of variational satisfiability solving. In this chapter we

generalize the variational solving procedure to variational SMT solving. SMT solvers

generalize SAT solvers through the use of background theories that allow the solver

to reason about values and constructs outside the Boolean domain. The SMTLIB2

standard defines seven such background theories: CORE (Boolean theory), ARRAYSEX,

FIXEDSIZEBITVECTORS, FLOATINGPOINT, INTS, REALS, and REAL_INTS. In this chap-

ter, we use integer arithmetic (INTS) as an example SMT extension for variational SMT

solving. Extensions for other background theories are similar to the INTS extension with

the exception of the array theory. The array theory presents unique challenges due to in-

teractions with choices; we conclude the section by presenting the array extension thus

recovering the most popular SMT background theories in the variational solver.

5.1 Variational Propositional Logic Extensions and Primitives

In order to construct a variational SMT solver we must first extend VPL to include non-

Boolean values, we call the extended language VPLZ since its values can range over

integers. VPL included two kinds of relations: relations such as ¬ and ∨ which required

accumulation in the presence of variation, and relations such as ∧ which required no

special handling. Unfortunately, in the presence of variation there are no relations such
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i ∈ Z Integers
ti ::= ri | i Integer variables and literals

ar ::= ti Terminal
| − ar Arithmetic Negation
| ar − ar Subtraction
| ar + ar Addition
| ar ∗ ar Multiplication
| ar ÷ ar Division
| D〈ar, ar〉 Choice

Figure 5.1: Syntax of integer arithmetic extension.

t ::= r | T | F Variables and Boolean literals

⊗ ::= < | ≤ | ≥ | > | ≡ Binary relations

f ::= t Terminal
| ¬f Boolean Negation
| f ∨ f Or
| f ∧ f And
| ar ⊗ ar Integer comparisons
| D〈f, f〉 Choice

Figure 5.2: Syntax of extended VPL (VPLZ).
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Not : (∆, s) → (∆, s) Negate a symbolic value
And : (∆, s, s) → (∆, s) Conjunction of symbolic values
Or : (∆, s, s) → (∆, s) Disjunction of symbolic values
Neg : (∆, s) → (∆, s) Negate an arithmetic symbolic value
Add : (∆, s, s) → (∆, s) Add symbolic values
Sub : (∆, s, s) → (∆, s) Subtract symbolic values
Div : (∆, s, s) → (∆, s) Divide symbolic values
Mult : (∆, s, s) → (∆, s) Multiply symbolic values
Lt : (∆, s, s) → (∆, s) Less than over symbolic values
Lte : (∆, s, s) → (∆, s) Less than equals over symbolic values
Gt : (∆, s, s) → (∆, s) Greater than over symbolic values
Gte : (∆, s, s) → (∆, s) Greater than equals over symbolic values
Eqv : (∆, s, s) → (∆, s) Arithmetic equivalence over symbolic values
Var : (∆, r) → (∆, s) Create symbolic value based on a boolean variable
Varz : (∆, ri) → (∆, s) Create symbolic value based on a arithmetic variable

Assert : (Γ,∆, s) → Γ Assert a symbolic value to the solver
GetModel : (Γ,∆) → m Get a model for the current solver state

Figure 5.3: Assumed base solver primitive operations for VPLZ

as ∧ for the SMT theories. Thus we add support for each theory except arrays through

accumulation. Our strategy to extend VPL to VPLZ is to add the appropriate cases to the

syntax of VPL, extend the intermediate language, add the requisite primitive operations,

and then extend the inference rules of accumulation and choice removal.

The VPLZ syntax is presented in Fig. 5.1. VPLZ includes syntax of the integer arith-

metic extension, which consists of integer variables, integer literals, a set of standard

operators, and choices. The sets of Boolean and arithmetic variables are disjoint, thus an

expression such as (s < 10 ) ∧ (s ∨ p), where s occurs as both an integer and Boolean

variable is disallowed. The syntax of the language prevents type errors and expressions

that do not yield Boolean values. For example, D〈1, 2〉∧ p is syntactically invalid. Sim-

ilarly, the language only allows arithmetic expressions as children of an inequality, for
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Varz(∆, ri) =

{
(∆, s) (ri, s) ∈ ∆

Varz(∆, ri) otherwise

Neg(∆, s) =

{
(∆, s′) (−s, s′) ∈ ∆

Neg(∆, s) otherwise

Add(∆, s1, s2) =

{
(∆, s3) (s1 + s2, s3) ∈ ∆

Add(∆, s1, s2) otherwise

Sub(∆, s1, s2) =

{
(∆, s3) (s1 − s2, s3) ∈ ∆

Sub(∆, s1, s2) otherwise

Div(∆, s1, s2) =

{
(∆, s3) (s1 ÷ s2, s3) ∈ ∆

Div(∆, s1, s2) otherwise

Mult(∆, s1, s2) =

{
(∆, s3) (s1 ∗ s2, s3) ∈ ∆

Mult(∆, s1, s2) otherwise

(a) Wrapped arithmetic primitives.

Lt(∆, s1, s2) =

{
(∆, s3) (s1 < s2, s3) ∈ ∆

Lt(∆, s1, s2) otherwise

Lte(∆, s1, s2) =

{
(∆, s3) (s1 ≤ s2, s3) ∈ ∆

Lte(∆, s1, s2) otherwise

Gt(∆, s1, s2) =

{
(∆, s3) (s1 > s2, s3) ∈ ∆

Gt(∆, s1, s2) otherwise

Gte(∆, s1, s2) =

{
(∆, s3) (s1 ≥ s2, s3) ∈ ∆

Gte(∆, s1, s2) otherwise

Eqv(∆, s1, s2) =

{
(∆, s3) (s1 ≡ s2, s3) ∈ ∆

Eqv(∆, s1, s2) otherwise

(b) Wrapped inequality primitives.

Figure 5.4: Wrapped SMT primitives.
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¬ ::= ¬ Boolean negation

† ::= − Negation

⊗ ::= ∧ Conjunction
| ∨ Disjunction

./ ::= < Less than
| > Greater than
| ≤ Less than Equal
| ≥ Greater than Equal
| ≡ Equivalency

⊕ ::= + Addition
| − Subtraction
| ∗ Multiplication
| ÷ Division

Figure 5.5: Syntactic categories of primitive operations

example: g = (A〈1, 2〉+j ≥ 2)∨a∧A〈c, d〉 is syntactically valid but p∧(1+7+2+9)

is not. Choices in the same dimension are synchronized across Boolean and arithmetic

sub-expressions, for example, the expression g = (A〈1, 2〉 + j ≥ 2) ∨ (a ∧ A〈c, d〉)

represents two variants: JgK{(A,true)} = (1+ j ≥ 2)∨ (a∧ c) and JgK{(A,false)} = (2+ j ≥

2) ∨ (a ∧ d).

Similarly to Chapter 4, we define the assumed primitive operations of the base solver

in Fig. 5.3, and wrapped versions for new operators in Fig. 5.4a and Fig. 5.4b. The

wrapped versions are defined identically as the wrapped primitives in Fig. 4.6 and serve

the same purpose. From the perspective of the variational solver, operations such as

addition, division, and subtraction only differ in the primitive operation emitted to the

base solver. Thus, we define syntactic categories over like operations in Fig. 5.5. No-
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tice that the categories correspond to the respective type of each operation. For exam-

ple, the Boolean categories encapsulate operations which take two Boolean expressions

and return a Boolean expression, similarly the inequality category encapsulate oper-

ators which take numeric expressions and return Boolean expressions. Further SMT

extensions would directly copy this pattern, that is, defining a syntactic category of

FIXEDSIZEBITVECTOR or REALS operators. Similarly, while we present only a single

arithmetic unary function −, other arithmetic unary functions would be straightforward

to add. For example, to include an absolute value operator abs , one would define the

wrapped primitive, and add the operator to the appropriate syntactic category without

requiring any modification to the inference rules or intermediate languages.

Just as VPL was extended, the intermediate language must be extended. First we

must add cases for inequality operations, and second we must define an intermediate

language for the arithmetic domain. Fig. 5.6 defines the intermediate arithmetic lan-

guage arZ, and the extended intermediate language vZ. The syntax of both intermediate

languages follow directly from VPLZ and should be unsurprising. The only important

difference from IL is that arZ cannot express a • value. This is a purposeful design

decision; recall that a • represents a term that has been sent to the base solver. Thus

if • were in arZ then expressions such as • + 2 would be expressible in arZ, however

because all arithmetic formula’s require accumulation the only possible result of evalu-

ation/accumulation on arithmetic expressions is either a choice or a symbolic term, not

a •. Hence, we syntactically avoid classes of bugs by omitting the • value in arZ.
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vZ ::= • | t | r | s | ¬vZ | vZ ⊗ vZ | arZ ./ arZ | D〈e, e〉

arZ ::= i | ri | s | † arZ | arZ ⊕ arZ | D〈ar, ar〉

Figure 5.6: Extended intermediate language syntax

5.2 Accumulation

The variational SMT version of accumulation is specified in Fig. 5.7 and is a generalized

variational fold over the abstract syntax tree of vZ. Just as before, accumulation is split

into congruence rules over the intermediate language, computation rules over symbolic

values and computation rules for references and choices.

The variational SAT version of accumulation is a specialized form of this version

of accumulation. The only semantic difference between operators is the code emitted

to the base solver, hence we generalize the previous version by performing a lookup to

retrieve the appropriate wrapped primitive. The primitive is indicated with an underline.

For example, if ⊗ = ∧ then A-BOOL-S specializes to A-AND-S where ⊗ = And, and

thus the resulting call becomes And(∆2, s1, s2). Hence, the rules A-AND-S, and A-OR-S

are specialized forms of the general rule A-BOOL-S.

Similarly, we collapse the arithmetic and inequality computation rules to A-ARITH-S

and A-INEQ-S. The semantics of each rule, besides the operator lookup, remains un-

changed; the congruence rules recur into the abstract syntax tree to convert references

to symbolic values, choices are skipped over due to A-CHC and A-CHC-I, and plain val-

ues are combined with the computation rules A-BOOL-S, A-ARITH-S, and A-INEQ-S.

The only other substantial difference is two new computation rules to handle arithmetic

choices and variables, A-CHC-I, and A-REF-I. Both serve the same function as their
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Var(∆, r) = (∆′, s)

(∆, r) 7→ (∆′, s)
A-REF

Varz(∆, ri) = (∆′, s)

(∆, ri) 7→ (∆′, s)
A-REF-I

(∆, vZ) 7→ (∆′, s) Not(∆′, s) = (∆′′, s′)

(∆,¬vZ) 7→ (∆′′, s′)
A-NOT-S

(∆, arZ) 7→ (∆′, s) †(∆′, s) = (∆′′, s′)

(∆, † arZ) 7→ (∆′′, s′)
A-UNARY-S

(∆, vZ
1 ) 7→ (∆1, s1)

(∆1, v
Z
2 ) 7→ (∆2, s2) ⊗(∆2, s1, s2) = (∆3, s3)

(∆, vZ
1 ⊗ vZ

2 ) 7→ (∆3, s3)
A-BOOL-S

(∆, arZ1 ) 7→ (∆1, s1)
(∆1, ar

Z
2 ) 7→ (∆2, s2) ⊕(∆2, s1, s2) = (∆3, s3)

(∆, arZ1 ⊕ arZ2 ) 7→ (∆3, s3)
A-ARITH-S

(∆, arZ1 ) 7→ (∆1, s1)
(∆1, ar

Z
2 ) 7→ (∆2, s2) ./ (∆2, s1, s2) = (∆3, s3)

(∆, arZ1 ./ arZ2 ) 7→ (∆3, s3)
A-INEQ-S

(∆, D〈e1, e2〉) 7→ (∆,D〈e1, e2〉)
A-CHC

(∆, D〈ar1, ar2〉) 7→ (∆,D〈ar1, ar2〉)
A-CHC-I

(∆, vZ) 7→ (∆′, vZ′)

(∆,¬vZ) 7→ (∆′,¬vZ′)
A-NOT-V

(∆, vZ) 7→ (∆′, vZ′)

(∆, †vZ) 7→ (∆′, †vZ′)
A-UNARY-V

(∆, vZ
1) 7→ (∆1, v

Z
1

′
) (∆1, v

Z
2) 7→ (∆2, v

Z
2

′
)

(∆, vZ
1 ⊗ vZ

2) 7→ (∆2, v
Z
1

′ ⊗ vZ
2

′
)

A-BOOL-V

(∆, arZ1 ) 7→ (∆1, ar
Z
1

′
) (∆1, ar

Z
2 ) 7→ (∆2, ar

Z
2

′
)

(∆, arZ1 ⊕ arZ2 ) 7→ (∆2, ar
Z
1

′ ⊕ arZ2
′
)

A-ARITH-V

(∆, arZ1 ) 7→ (∆1, ar
Z
1

′
) (∆1, ar

Z
2 ) 7→ (∆2, ar

Z
2

′
)

(∆, arZ1 ./ arZ2 ) 7→ (∆2, ar
Z
1

′
./ arZ2

′
)

A-INEQ-V

Figure 5.7: Accumulation inference rules
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Boolean counterparts A-CHC and A-REF.

In this form it should be plain to see the recipe to further extend accumulation to

another background theory. One would add a new computation rules for the new kinds

of references and choices, a new computation rule for symbolic references in the theory,

and a new congruence rule over the new abstract syntax trees. Extending accumulation

with new operators is similarly trivial. Recall the modulus example, to extend accumu-

lation with a modulus operator, assuming the wrapped primitive has been defined, we

would only need to add the operator to ⊕ syntactic category and create a case such that

mod ∈ ⊕ succeeds.

5.3 Evaluation

Evaluation’s purpose is to assert symbolic terms in the base solver if it is safe to do

so. Thus, the extensions to evaluation are minimal as accumulation is performing the

majority of the work in creating the symbolic terms.

Variational SMT evaluation is defined in Fig. 5.8. The only change is the addition

of E-INEQ corresponding to the addition of inequalities to VPL. Just as E-OR skips over

un-accumulated disjunctions, E-INEQ skips over un-accumulated inequalities since eval-

uating inside an inequality is unsound in the base solver. Since evaluation calls E-ACC

to accumulate relations if E-AND-L, E-AND-R, and E-AND don’t apply, variational SMT

evaluation simply relies on accumulation to progress. The special cases for conjunctions

are maintained in order to sequence evaluation from left to right to take advantage of the

behavior of the assertion stack and to propagate accumulation across conjunctions, just
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(∆, vZ) 7→ (∆′, vZ′) (Γ,∆′, vZ′)� (Γ′,∆′′, vZ′′)

(Γ,∆, vZ)� (Γ′,∆′′, vZ′′)
E-ACC

Assert(Γ,∆, s) = Γ′

(Γ,∆, s)� (Γ′,∆, •)
E-SYM

(Γ,∆,D〈e1, e2〉)� (Γ,∆,D〈e1, e2〉)
E-CHC

(Γ,∆, vZ
1 ∨ vZ

2 )� (Γ,∆, vZ
1 ∨ vZ

2 )
E-OR

(Γ,∆, vZ
1 ./ vZ

2 )� (Γ,∆, vZ
1 ./ vZ

2 )
E-INEQ

(Γ,∆, vZ
1 )� (Γ1,∆1, •) (Γ1,∆1, v

Z
2 )� (Γ2,∆2, v

Z
2

′
)

(Γ,∆, vZ
1 ∧ vZ

2 )� (Γ2,∆2, v
Z
2

′
)

E-AND-L

(Γ,∆, vZ
1 )� (Γ1,∆1, v

Z
1

′
) (Γ1,∆1, v

Z
2 )� (Γ2,∆2, •)

(Γ,∆, vZ
1 ∧ vZ

2 )� (Γ2,∆2, v
Z
1

′
)

E-AND-R

(Γ,∆, vZ
1 )� (Γ1,∆1, v

Z
1

′
) (Γ1,∆1, v

Z
1 )� (Γ2,∆2, v

Z
2

′
)

(Γ,∆, vZ
1 ∧ vZ

2 )� (Γ2,∆2, v
Z
1

′ ∧ vZ
2

′
)

E-AND

Figure 5.8: Evaluation inference rules
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zZ ::= >
| ¬ · :: zZ
| † · :: zZ
| · ⊗ vZ :: zZ

| s⊗ · :: zZ
| · ⊕ vZ :: zZ

| s⊕ · :: zZ
| · ./ vZ :: zZ

| s ./ · :: zZ

Figure 5.9: Variational SMT zipper context

as in variational satisfiability evaluation.

5.4 Choice Removal

With accumulation and evaluation complete we turn to choice removal. Our strategy

is similar to accumulation; we generalize the zipper context over Boolean, arithmetic

and inequality relations using the syntactic categories defined in Fig. 5.5. Conceptu-

ally, choice removal remains a variational left fold that builds the zipper context until a

symbolic value is the focus, at which point rules of the form C-*-INL switch the fold to

process the right child of the relations, and rules of the form C-*-INR call accumulation

to reduce the relation over symbolic values. We formally specify generalized choice

removal in Fig. 5.10. The heart of choice removal remains the same; the rules C-EVAL,

C-CHC, C-CHC-T, and C-CHC-F are reproduced for the new zipper context zZ but are

semantically identical to the specialized versions. The remaining rules are generalized

versions of the SAT rules to handle each syntactic category the variational solver can
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(Γ,∆, vZ)� (Γ′,∆′, •) Combine(M,GetModel(∆,Γ)) = M ′

(C ,Γ,∆,M,>, vZ) ⇓M ′ C-EVAL

(D, true) ∈ C (C ,Γ,∆,M, zZ, vZ
1 ) ⇓M ′

(C ,Γ,∆,M, zZ,D〈vZ
1 , v

Z
2 〉) ⇓M ′ C-CHC-T

(D, false) ∈ C (C ,Γ,∆,M, zZ, vZ
2 ) ⇓M ′

(C ,Γ,∆,M, zZ,D〈vZ
1 , v

Z
2 〉) ⇓M ′ C-CHC-F

D /∈ dom(C) (C ∪ (D, true),Γ,∆,M, zZ, vZ
1 ) ⇓M1

(C ∪ (D, false),Γ,∆,M ′, zZ, vZ
2 ) ⇓M2

(C ,Γ,∆,M, zZ,D〈vZ
1 , v

Z
2 〉 ⇓M2

C-CHC

(C ,Γ,∆,M,¬ · :: zZ, vZ) ⇓M ′

(C ,Γ,∆,M, zZ,¬vZ) ⇓M ′ C-NOT

(∆,¬s) 7→ (∆′, s′) (C ,Γ,∆,M, zZ, s′) ⇓M ′

(C ,Γ,∆,M,¬ · :: zZ, s) ⇓M ′ C-NOT-IN

(C ,Γ,∆,M, · ⊗ vZ
2 :: z, vZ

1 ) ⇓M ′

(C ,Γ,∆,M, zZ, vZ
1 ⊗ vZ

2 ) ⇓M ′ C-BOOL

(C ,Γ,∆,M, s⊗ · :: zZ, vZ) ⇓M ′

(C ,Γ,∆,M, · ⊗ vZ :: zZ, s) ⇓M ′ C-BOOL-INL

(∆, s1 ⊗ s2) 7→ (∆′, s3) (C ,Γ,∆,M, zZ, s3) ⇓M ′

(C ,Γ,∆,M, s1 ⊗ · :: zZ, s2) ⇓M ′ C-BOOL-INR

Figure 5.10: Variational SMT choice removal inference rules
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(C ,Γ,∆,M, † · :: zZ, vZ) ⇓M ′

(C ,Γ,∆,M, zZ, †vZ) ⇓M ′ C-UNARY

(∆, †s) 7→ (∆′, s′) (C ,Γ,∆,M, zZ, s′) ⇓M ′

(C ,Γ,∆,M, † · :: zZ, s) ⇓M ′ C-UNARY-IN

(C ,Γ,∆,M, · ./ vZ
2 :: z, vZ

1 ) ⇓M ′

(C ,Γ,∆,M, zZ, vZ
1 ./ vZ

2 ) ⇓M ′ C-INEQ

(C ,Γ,∆,M, s ./ · :: zZ, vZ) ⇓M ′

(C ,Γ,∆,M, · ./ vZ :: zZ, s) ⇓M ′ C-INEQ-INL

(∆, s1 ./ s2) 7→ (∆′, s3) (C ,Γ,∆,M, zZ, s3) ⇓M ′

(C ,Γ,∆,M, s1 ./ · :: zZ, s2) ⇓M ′ C-INEQ-INR

(C ,Γ,∆,M, · ⊕ vZ
2 :: z, vZ

1 ) ⇓M ′

(C ,Γ,∆,M, zZ, vZ
1 ⊕ vZ

2 ) ⇓M ′ C-ARITH

(C ,Γ,∆,M, s⊕ · :: zZ, vZ) ⇓M ′

(C ,Γ,∆,M, · ⊕ vZ :: zZ, s) ⇓M ′ C-ARITH-INL

(∆, s1 ⊕ s2) 7→ (∆′, s3) (C ,Γ,∆,M, zZ, s3) ⇓M ′

(C ,Γ,∆,M, s1 ⊕ · :: zZ, s2) ⇓M ′ C-ARITH-INR

Figure 5.10: Variational SMT choice removal inference rules
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process.

For each syntactic category we define three kinds of rules which form a template to

extend choice removal to new background theories: First, we have rules which deter-

mine what to do when encountering a binary or unary relation for the first time. As a

design choice this is defined to proceed into the left child. For example C-NOT, C-BOOL,

and C-INEQ initiate the left fold by storing the relation in the zipper and focusing the left

child vZ
1 . Second, we define rules which recur down the left child of the relations until

a symbolic value results from accumulation. For example, C-INEQ-INL, C-BOOL-INL,

and C-ARITH-INL all move the focused symbol value s to the zipper context allowing

choice removal to proceed to the right children of the same relation. Lastly, we have

computation rules which perform the fold on the relation by calling accumulation. For

example, C-UNARY-IN, C-ARITH-INR, and C-INEQ-INR call accumulation to process

the symbolic value and reduce the given relation. In effect, accumulation encapsulates

the semantics of the relations, evaluation propagates accumulation and performs code

generation in the base solver, and choice removal alters the configuration, maintains

evaluation contexts, and removes choices introducing new plain terms to the formula.

5.5 Variational SMT Models

We have thus far covered accumulation, evaluation, and choice removal. However, to

support SMT theories, variational models must be general enough to handle values other

than Booleans. Functionally, variational SMT models must satisfy several constraints:

First, the variational SMT model must be more memory efficient than storing all models
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returned by the solver naively. Second, the variational model must allow users to find

satisfying values for a variant. Third, the model must allow users to find all variants in

which a variable has a particular value or range of values.

Furthermore, several useful properties of variational models should be maintained:

First, the model is non-variational; the user should not need to understand the choice

calculus to understand their results. Second, the model produces results that can be fed

into a plain SAT or SMT solver. Third, the model can be built incrementally and without

regard to the ordering of results. Variational SAT models guaranteed this last constraint

by forming commutative monoid under ∨, a technique which we cannot replicate for

variational SMT models.

To maintain these properties and satisfy the functional requirements, our strategy

for variational SMT models is to create a mapping of variables to SMT expressions.

A variable’s type is syntactically ensured to not change as variable sets are disjoint.

Thus variables are disallowed from changing type as the result of a choice. For any

variable in the model, we assume the type returned by the base solver is correct, and

store the satisfying value in a linked list constructed of if-statements. Specifically, we

utilize the function ite : B → T → T from the SMTLIB2 standard to construct the

list. All variables are initialized as undefined (Und ) until a value is returned from the

base solver for a variant. To ensure the correct value of a variable corresponds to the

appropriate variant, we translate the configuration which determines the variant to a

variation context, and place the appropriate value in the then branch.

Consider the following VPLZ formula: f = ((A〈i , 13〉−c) < (b+10))→ B〈a, c >

i〉. f contains two unique choices, A, B , and thus represents four variants. In this case,
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the expression is under-constrained and so each variant will be found satisfiable.

i → -1
c → 0

b → 4
CFF = {(A, false), (B , false)}

c → 0
a → F
b → 0

CFF = {(A, false), (B , true)}

i → 0
c → 0

b → -10
CFT = {(A, true), (B , false)}

i → -1
c → 0
a → T
b → 3

CTT = {(A, true), (B , true)}

Figure 5.11: Possible plain models for variants of f .

Fig. 5.11 shows possible plain models for f with the corresponding variational SMT

model presented in Fig. 5.12. We’ve added line breaks to emphasize the then and else

branches of the ite SMTLIB2 primitive.

This formulation maintains the functional requirements and desirable properties of

the variational SAT models. The variable _Sat is used to track the variants that were

found satisfiable, just as in the variational SAT solver. In this case, all variants are

satisfiable and thus we have four clauses over dimensions in disjunctive normal form.

If a user has a configuration then they only need to perform substitution to determine

the value of a variable under that configuration. For example, if the user were interested

in the value of i in the {(A,T), (B ,T)} variant they would substitute the configuration

into the result for i and recover 2 from the first ite case. To find the variants at which

a variable has a value, a user may employ an SMT solver, add the entry for i as a

constraint, and query for a model. This specification of variational SMT models does
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_Sat→ (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ ¬B) ∨ (A ∧ B)
i → (ite (A ∧ B ) -1

(ite (A ∧ ¬B ) 0
(ite (¬A ∧ ¬B ) -1 Und )))

c → (ite (A ∧ B ) 0
(ite (A ∧ ¬B ) 0

(ite (¬A ∧ B ) 0
(ite (¬A ∧ ¬B ) 0 Und )))

a → (ite (A ∧ B ) T
(ite (¬A ∧ B ) F Und ))

b → (ite (A ∧ B ) 3
(ite (A ∧ ¬B ) -10

(ite (¬A ∧ B ) 0
(ite (¬A ∧ ¬B ) 4 Und )))

Figure 5.12: Variational model corresponding to the plain models in Fig. 5.11.

not require knowledge of choice calculus or variation, it is still monoidal—although not

a commutative monoid—and can be built in any order as long as there are no duplicate

variants, a scenario that is impossible by the property of synchronization on choices.

However, there are some notable differences. Where variational SAT models clearly

compressed results by preventing duplicate values with constant variables, the varia-

tional SMT model allows for duplicate values, if those values are produced out of order.

For example, both models for i and c contain duplicate values. The i model has dupli-

cate −1’s for the {(A,T), (B ,T)} and {(A,F), (B ,F)} variants. The c model demon-

strates the worst case, where the variational model has naively duplicated 0’s for every

variant. However only c is easy to check in O(1 ) time; each call to COMBINE could

check the last immediate value to prevent duplicate branches. In contrast, the duplicate

−1’s for i occur in variants that are likely to occur out of order, i.e., with other plain
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models between them, namely the models for the CTF and CFF variants. Hence, a check

during COMBINE would requireO(n) time, where n is the number of satisfiable variants

that i occurs in. While such a case is easily avoided in an implementation by track-

ing the values a variable has been previously assigned, we provide only a minimum

specification and thus leave the details to an implementation. Lastly, the use of Und

may seem unattractive. While all bindings in the model end with an Und , a binding

cannot result in an Und as that would imply a variant that was found to be satisfiable

but was not satisfiable, and hence would be indicative of a bug in the variational solver

implementation.

5.6 A Complete Variational SMT Example

With variational SMT solving formally specified. We present a complete example of

solving a variational SMT problem. Consider the query formula

h = ((1 + 2 < (i − A〈k , l〉)) ∧ a) ∧ (B〈c,¬b〉 ∨ b) with two choices parameterized

by the dimensions A and B. Derivation of the variational core for h begins with all

evaluation contexts and all stores ∆, Γ initialized to ∅.

The root of h is ∧ and thus E-AND is the only applicable rule. From E-AND we

have vZ
1 = ((1 + 2 < (i − A〈k , l〉)) ∧ a), and vZ

2 = (B〈c,¬b〉 ∨ b). We traverse vZ
1

first, leading to a recursive application of E-AND. We denote recursive levels with a tick

mark: ′, thus vZ
1
′
= (1 + 2 < (i − A〈k , l〉)) is the left child of vZ

1 , with vZ
2
′
= a as the

right child.

The root of vZ
1
′ is an inequality, so the only way to progress is to try to accumulate
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vZ
1
′. The accumulation will succeed; in accumulation, only A-INEQ-V can apply as

accumulation will be unable to transform the right child of vZ
1
′ to a symbolic value due

to the presence of a choice. A-INEQ-V will further destruct vZ
1
′ to arZ1 = 1 + 2 and

arZ2 = i − A〈k, l〉. arZ1 will be accumulated to a single symbolic value by application

of A-ARITH-S and A-REF on the literals 1 and 2 yielding arZ1 = s12, with store ∆ =

{(s1 + s2, s12), (2, s2), (1, s1)}.

Using the resultant store from accumulating arZ1 , accumulation on arZ2 will yield

the term si − A〈k, l〉. The variable i will be accumulated to a symbolic value with

A-REF and the choice will be passed over by A-CHC. Thus we have the accumulated

result for vZ
1
′ as the intermediate term vZ

1 acc = s12 < (si − A〈k, l〉) with store ∆ =

{(i, si), (s1 + s2, s12), (2, s2), (1, s1)}.

With the left child of vZ
1
′ accumulated, E-AND attempts to continue evaluation on the

right child and will succeed. Notice that this is a special case as the root of vZ
1 is ∧ and

so is the root of h. Thus, vZ
2 will transform a to a symbolic value through accumulation

using the previous store and assert the symbolic value in the base solver with E-SYM.

The resulting intermediate term will be s12 < (si − A〈k, l〉) ∧ •, with stores Γ = {sa},

∆ = {(a, sa), (i, si), (s1+s2, s12), (2, s2), (1, s1)} and will be reduce to the intermediate

result vZ
1 core = s12 < (si − A〈k, l〉) with the same stores via application of E-AND-R.

We have now returned back to the top level call to E-AND with a result for the left

child and populated stores. Evaluation will proceed on the right child vZ
2 . vZ

2 ’s root

is a disjunction, and thus to proceed evaluation switched to accumulation by applying

E-ACC. The accumulation is straightforward; the left child is the choice B〈c,¬b〉 and

is returned by A-CHC. The right child is a single variable, and thus is translated to the
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symbolic value sb. Thus we have the final result for vZ
2 , vZ

2 core = B〈c,¬b〉 ∨ sb and

the variational core of h, hcore = s12 < (si − A〈k, l〉) ∧ (B〈c,¬b〉 ∨ sb) with stores

Γ = {sa}, ∆ = {(b, sb), (a, sa), (i, si), (s1 + s2, s12), (2, s2), (1, s1)}.

With the variational core derived we can begin choice removal. We assume an empty

configuration for the remainder of the example. The exact semantics of a vc is imple-

mentation specific. For example, our prototype variational SAT solver pre-populates

the configuration with a generated configuration based on the user vc . In contrast, the

prototype variational SMT solver checks the dimensions assignments of true or false in

C-CHC are valid with respect to the vc , if not then the variant is skipped.

Choice removal begins with the variational core in the focus and an evaluation con-

text zZ = >, because hcore’s root is ∧ only C-BOOL applies moving s12 < (si − A〈k, l〉)

into the focus and storing the right child in the context: zZ = · ∧ (B〈c,¬b〉 ∨ sb) :: >.

With s12 < (si−A〈k, l〉) as the focus, the only applicable rule is C-INEQ due to < at the

root of the focus. C-INEQ again recurs left, focusing on the sub-term s12 with context

zZ = · < (si − A〈k, l〉) :: · ∧ (B〈c,¬b〉 ∨ sb) :: > which states that s12 exists in the left

child of an inequality which also exists in the left child of a conjunction.

We have arrived at the base case with a symbolic value in focus, and the imme-

diate parent in the evaluation context is an inequality. To proceed we need to switch

to begin processing the right child of the inequality; thus we must apply C-INEQ-INL.

C-INEQ-INL swaps the symbolic with the un-processed right child held in the context,

hence we have (si−A〈k, l〉) in focus with context zZ = s12 < · :: ·∧(B〈c,¬b〉∨sb) :: >.

Subtraction, −, is a previously unseen relation. When a new relation is found, choice

removal will recur into the left child. In this case − ∈ ⊕ and so C-ARITH applies.
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C-ARITH moves si into the focus and extend the evaluation context to zZ = ·−A〈k, l〉 ::

s12 < · :: · ∧ (B〈c,¬b〉 ∨ sb) :: >.

With si in the focus, we’ve arrived at another base case, only this time when the

switch occurs a choice will be in focus. The switch is performed by C-ARITH-INL and

yields A〈k, l〉 as the focus with context zZ = si − · :: s12 < · :: · ∧ (B〈c,¬b〉 ∨ sb) :: >.

Now the heart of choice removal applies, because we have C = ∅, the only applicable

rule with a choice in the focus is C-CHC. C-CHC creates two recursive calls, one for

each alternative using the same context, thus we’ll have C = {(A, true)}, with focus k,

and context zZ = si − · :: s12 < · :: · ∧ (B〈c,¬b〉 ∨ sb) :: >.

For the remainder of the example we’ll continue with only true alternatives; the other

variants follow similar paths. Accumulation is called on the introduced plain terms,

converting k to sk and extending the accumulation store to

∆ = {(k, sk), (b, sb), (a, sa), (i, si), (s1 + s2, s12), (2, s2), (1, s1)}.

With a symbolic value in focus, and with the context already switched to the right

child, we have come to a sequence of base cases which perform the folds, in this case

C-ARITH-INR applies. C-ARITH-INR calls accumulation on si − sk. si − sk has not yet

been observed in accumulation and thus the new symbolic value sik will be generated.

This yields sik in the focus, with ∆ = {(si−sk, sik), (k, sk), (b, sb), (a, sa), (i, si), (s1 +

s2, s12), (2, s2), (1, s1)}, and zZ = s12 < · :: · ∧ (B〈c,¬b〉 ∨ sb) :: >.

With sik in focus, we have yet another base case which consumes some context,

only this time we consume the inequality using C-INEQ-INR. C-INEQ-INR calls accu-

mulation on s12 < sik, similar to the previous call over −, this call produces a new

symbolic value and extends the accumulation store. Hence, we’ll have s12ik in the fo-
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cus, with ∆ = {(s12 < sik, s12ik), (si − sk, sik), (k, sk), (b, sb), (a, sa), (i, si), (s1 +

s2, s12), (2, s2), (1, s1)}, and zZ = · ∧ (B〈c,¬b〉 ∨ sb) :: > as the evaluation context.

With a symbolic value in the focus, and a context indicating the left child of a relation,

choice removal switches to process the right alternative. The relation in this case is ∧

and so C-BOOL-INL applies to execute the switch yielding B〈c,¬b〉 ∨ sb in the focus,

and zZ = s12ik∧· :: >. ∨ is a relation that is previously unseen, and thus C-BOOL recurs

into its left child yielding the choice B〈c,¬b〉 in the focus and

zZ = · ∨ sb :: s12ik ∧ · :: > as the context.

We have arrived at the second choice. B /∈ dom(C) and thus only C-CHCapplies.

Following the true alternative for B, accumulation is called on c yielding sc in the focus,

with C = {(B, true), (A, true)}, ∆ = {(c, sc), (s12 < sik, s12ik), (si − sk, sik), (k, sk)

, (b, sb), (a, sa), (i, si), (s1 + s2, s12), (2, s2), (1, s1)}, and zZ = · ∨ sb :: s12ik ∧ · :: >.

All that is left is a switch and then to complete the fold with the symbolic values.

C-BOOL-INL switches the context placing sb in the focus and yielding zZ = sc ∨ · ::

s12ik ∧ · :: >, which will be followed by C-BOOL-INR to disjunct sc and sb using accu-

mulation. The resulting term will have sbc in the focus, ∆ = {(sc∨sb, scb), (c, sc), (s12 <

sik, s12ik), (si−sk, sik), (k, sk) , (b, sb), (a, sa), (i, si), (s1+s2, s12), (2, s2), (1, s1)}, and

zZ = s12ik ∧ · :: >, which leaves only one more reduction until model generation.

C-BOOL-INR applies again to conjunct the last two symbolic values, yielding zZ =

>, s12ikbc in the focus and ∆ = {(s12ik ∧ sbc, s12ikbc), (sc ∨ sb, scb), (c, sc), (s12 <

sik, s12ik), (si − sk, sik), (k, sk) , (b, sb), (a, sa), (i, si), (s1 + s2, s12), (2, s2), (1, s1)}.

Thus we have reached the variant parameterized by C = {(B, true), (A, true)}

C-EVAL applies due to zZ = > and the symbolic value in the focus, E-SYM will yields
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• with zZ = >, indicating that it is safe to query a model for this variant from the

base solver. Due to the two application of C-CHC three other variants will be found

during backtracking beginning with the dimension used in the most recent application.

In this case that is the dimension B, and thus the next variant that will be found is pa-

rameterized by C = {(B, false), (A, true)} with context zZ = · ∨ sb :: s12ik ∧ · :: >

and ∆ = {(c, sc), (s12 < sik, s12ik), (si − sk, sik), (k, sk) , (b, sb), (a, sa), (i, si), (s1 +

s2, s12), (2, s2), (1, s1)}.

5.7 Variational SMT Arrays

With variational SMT solving fully specified we can reflect on the generalization recipe

from the previous sections. Say we want to add the SMT background for REALS. Doing

so would follow the straightforward recipe demonstrated with INTS: From the SMTLIB2

standard we have a set of primitive operators, we would define wrapped primitive ver-

sions for each operator. Using these wrapped operators, we would define new cases for

accumulation and a base case for evaluation indicating that the new operator requires ac-

cumulation. Then we would add the new domain to the syntactic categories in Fig. 5.5.

Choice removal would be extended with three new rules, a rule to begin the processing

of the left child of the relation, a rule to switch from the left child to the right only when

a symbolic value is in the focus, and a rule that performs the fold by combining two

symbolic values and thus consuming some of the context.

In essence, we have a recipe for a generalized variational folding algorithm over

binary relations that forces reuse of shared terms and is applied to the domain of SAT
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and SMT solvers. Recall that a symbolic value is a sequence of statements in the base

solver. Thus, another way to view our generalized folding algorithm is as a compiler

from the language of variational SAT or SMT to plain SMTLIB2 script. The stages

of the compiler in this interpretation are straightforward: First, we parse a variational

SAT or SMT problem to an abstract syntax tree in an intermediate language. Second,

the intermediate language enables optimization passes and is easier to work with than

the object language. Third, accumulation and evaluation produce a variational core,

which can be seen as another, further reduced core language, or as a syntax object that

encapsulates the variational aspects of the input. Fourth, the core language is operated

by choice removal which deterministically produces the variant syntax objects. Code

generation is spread across generation of symbolic values in accumulation, assertion of

constraints in evaluation, and calls to PUSH or POP during choice removal, specifically

during C-CHC.

The exact ordering of the operations in the base solver, or the ordering of code gen-

eration, is implementation specific. In the prototype solvers that we have produced and

will discuss further in the next chapter, code generation that corresponds to generating

symbolic values occurs when the symbolic value becomes known to ∆. When a config-

uration occurs, the PUSH/POP calls encapsulate the operator the choice was nested in and

any new symbolic values which result from the configuration. This ensures sharing of

terms that are in the same assertion levels. For example, consider the case of s12 from

Section 5.6, s12 will be shared once for each variant because it is plain, thus the code

which defines it must occur before a PUSH and POP call:

(declare-const s1 Int) ; ; literal declarations
(declare-const s2 Int)
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(declare-fun s12 () Int
(+ s1 s2))

(push) ; ; push for true alternative of A
...

Similarly for terms such as sik, which will be shared twice but are not plain, because i

was transformed into a symbolic before the choice was configured its declaration still

occurs outside the PUSH/POP block. In contrast, k is parameterized by a choice and thus

its declaration occurs inside a PUSH/POP block:

(declare-const s1 Int) ; ; literal declarations
(declare-const s2 Int)
(declare-fun s12 () Int

(+ s1 s2))
...
(declare-const si Int) ; ; i is declared
(push) ; ; push for true alternative of A
(declare-const sk Int)
(declare-fun sik () Int

(< si sk))
...

In this case, the ordering of symbolic value generation forced sk to be inside the PUSH

call so that it is removed from the local scope of the solver after a POP and thus the

boundaries between alternatives do not leak information. Notice that the inference rules

in Section 5.2, Section 5.3, and Section 5.4 guarantee this behavior because symbolic

value creation is ordered according to levels of variation. For example, plain terms

are level 0 since no configuration has happened. In a sense they are globally scoped

and thus become symbolic values or •’s first. It is only after a configuration occurs

from C-CHC that more plain terms are introduced. When a configuration occurs, a new
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PUSH/POP block is entered, and thus any calls to accumulation which occur inside it

occur inside that block in the base solver and correspond to level 1. Furthermore, the

level is propagated by the D ∈ C check in C-CHC-T and C-CHC-F.

To demonstrate the generality of this design we now consider the case of adding

SMT arrays. To add SMT arrays we treat arrays as a new kind of relation. By treating

them like any other relation, we take advantage of the aforementioned ordering behavior

and offload the hard work to choice removal. SMT arrays are defined by two operations

(store a i e) and (select a i), where a is a variable representing the array, i is an index

into the array, and e is an element of the array. Each operation must exist inside a

boolean constraint to propagate information about the array, for example (store a 2 b)

leaves a unconstrained, while a ≡ (store a 2 b) adds a constraint that forces position 2

to store b in a. Similarly, select must exist in a constraint, e.g., x ≡ (select a 2) will add

a constraint which sets x to b.

Assume that we restrict i to only INT, using the recipe above we would wrap these

operations, add new rules to accumulation to accumulate anything in the a, i, or e po-

sitions and then extend zZ such that a context could be captured wherever choices may
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occur. For example we might have:

zZ ::= >
| ¬ · :: zZ
| † · :: zZ
| · ⊗ vZ :: zZ

| s⊗ · :: zZ
| · ⊕ vZ :: zZ

| s⊕ · :: zZ
| · ./ vZ :: zZ

| s ./ · :: zZ
| (store · s s) :: zZ

| (store s · s) :: zZ

| (store s s ·) :: zZ

| (select · s) :: zZ

| (select s ·) :: zZ

This is verbose but would work. Now consider a formula which contains a nested

choice in an arithmetic expression in the element slot of select but not store: f =

(a ≡ (store a 2 (i − A〈k, l〉))) ∧ (i ≡ selecta2) ∧ (i ≡ l). The conjunctions indi-

cate separate statements in SMTLIB2 due to the behavior of the assertion stack. The

formula is noteworthy because both the select and i ≡ l call are plain and thus will

be processed by evaluation/accumulation before choice removal via the E-AND-L and

E-AND-R. So the formula may seem problematic because calling a select before a store

in other paradigms would lead to an error. However this will not be the case, consider

the compiled SMTLIB2 script for f in Fig. 5.13. From the compiled output, we see that

evaluation/accumulation did find the plain select and i ≡ l constraints and assert them

before the choice is processed. However, because constraints in the base solver can be

unordered due to the implicit conjunction of all assertions in an assertion level, the out



79

(declare-const sa (Array Int Int) ) ; ; variable declarations
(declare-const si Int)
(declare-const sl Int)
(declare-const s2 Int)
(declare-fun ssel () Int ; ; select

(= si (select sa s2)))
(declare-fun sil () Int ; ; equivalency constraint

(= si sl))
(assert ssel)
(assert sil)
(push) ; ; push for true alternative of A
(declare-const sk Int)
(declare-fun sik () Int

( - si sk))
(assert (= sa (store sa (s2) (sik)))
(check-sat)
(get-model) ; ; plain model for true alternative
(pop)
(push) ; ; push for false alternative of A
(declare-fun sil () Int

( - si sl))
(assert (= sa (store sa (s2) (sil)))
(check-sat)
(get-model) ; ; plain model for false alternative
(pop)

Figure 5.13: The SMTLIB2 output from compiling f .

of order select and constraint i ≡ l are not problematic. Furthermore, we see that the

SMTLIB2 snippet has desirable properties: every plain or variational term, such as l and

i, can be shared. When a PUSH/POP block is entered the block is as small as possible,

thus sharing is maximized as much as possible. Due to the symbolic values generated

by accumulation/evaluation, variation does not spread past the immediate relation and

thus other relations do not suffer from variational infection [134].
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We have demonstrated the generality of our approach by extensions with the differ-

ing domains of arithmetic over integers and arrays. Key to the approach is the indirection

with symbolic values and the use of a zipper to construct a generalized variational fold-

ing algorithm over any unary, binary, or ternary relation. Thus, with just what has been

presented here we can support the rest of the core theories in SMTLIB2 using the afore-

mentioned extension recipe. We return to this point in Chapter 7 when we discuss the

implications for a variational logic programming language.
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Chapter 6: Case Studies

We have formalized variational SMT and SAT solving. However, we have yet to inves-

tigate the performance of our methods. Recall from Chapter 1 that a motivating reasons

for a variational solver was that if we only compute shared terms once, then we should

observe a speedup in runtime performance when solving sets of related SAT problems

because information is reused. In this chapter, we investigate and verify these claims.

Assessing the performance of SAT and SMT solvers is notoriously difficult [61]

because it depends on the input problem to the SAT or SMT solver. The issue is related

to the computational hardness of the input. Hardness, in this domain is estimated by the

ratio of clauses in the SAT or SMT problem to the number of variables. Conceptually, if

there are many clauses and not many variables then the problem is over-constrained and

it is easy to decide UNSAT, however if there are few clauses but many variables then the

problem is under-constrained and it is easy to decide SAT. Thus, hard problems rest in a

phase transition zone where the ratio of clauses to variables is neither over-constrained

nor under-constrained [61].

To investigate the performance of our methods, we construct a prototype variational

solver, VSAT in the Haskell programming language [68] and quantitatively compare it

to incremental and non-incremental SAT solving. Assessing the prototype in realistic

conditions is difficult as there does not exist a corpus of accepted representative varia-

tional SAT problems. Thus, to test the prototype in as realistic conditions as possible
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we utilize real-world data from a previous study by Nieke et al. [104] from the SPL

community.

Before we describe the datasets and resulting variational SAT problems we first in-

troduce some terminology from the SPL community. A SPL is an instance of variational

software, a set of software-intensive systems that share a common, managed set of fea-

tures satisfying the specific needs of a particular market segment or mission and that are

developed from a common set of core assets in a prescribed way [7, 42, 107].

A good example of a SPL is the Linux kernel [128]. The Linux kernel is a set of core

assets which devise an operating system, but the assets are parameterized by features

which, in this case, are the Boolean conditions of conditional-compilation statements

such as #ifdefs. To select the particular kind of kernel to build, the Linux kernel uses

the KConfig [39] tool to enable or disable features and thus specify the exact kernel

to build. The set of features and their dependencies which determine the product, or in

this case determine the kernel that is built is call a feature model [70].

It is common to express feature models as a SAT formula where variables are fea-

tures, and dependencies are expressed using logical connectives. Thus, reasoning about

feature models with a SAT solver is an active sub-field in software product-lines [21, 57,

20, 125]. For example, a void analysis uses a SAT solver to determine that a product is

possible, and a core analysis manipulates the feature model to check that a given feature

must be T (or enabled in the SPL terminology) for every viable product. Conceptually

in this domain, if a SAT is returned from the solver then the resulting model is an assign-

ment of features which specifies a viable product. If an UNSAT is returned than no viable

product exists given the constraints on the feature model for the software product line.
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6.1 Experimental Methodology

For the remainder of the chapter, we must distinguish between concepts in the applica-

tion domain, such as a void or core analysis, and concepts in the solver domain, such

as a query or choice. In general, we focus on the solver domain as it is our primary

concern.

Nieke et al. provides two datasets1, automotive02 and financialServices1 which en-

code the evolution histories of two feature models as propositional formulas. We refer

to these as the auto dataset, and fin dataset for the remainder of this chapter. Since these

datasets encode evolution histories, variants in our analysis correspond to snapshots of

feature models over time, and a plain model of a variant corresponds to a void analysis

over that feature model. For example, a variant of the auto dataset is a C2 formula which

encodes a feature model at time 0, and another variant encodes the same feature model

at time 2, where 0 < 2. Recall the possible existence of extra variants from Section 3.4,

since extra variants may exist given a VPL encoding of the datasets we use the phrase

version variant to refer to variants that are snapshots of a feature model in the applica-

tion domain. For example, the variant which corresponds to a feature model at time 0

is a version variant, but the variant which corresponds to a feature model at time 0 and

and time 2 are non-version variants.

We assess the performance characteristics VSAT by attempting to answer the fol-

lowing research questions.

RQ1 How does variational solving scale as variation increases?

1see https://gitlab.com/evolutionexplanation/evolutionexplanation

https://gitlab.com/evolutionexplanation/evolutionexplanation
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RQ2 What is the impact of base solvers on performance?

RQ3 What is the impact of sharing on performance?

RQ4 What is the cost of solving a plain formula on VSAT?

To investigate RQ1 and RQ2, we consider all variants of the VPL formulas con-

structed for each dataset, rather than just the version variants that are of interest in the

application domain. This allows us to better evaluate how VSAT scales to accommo-

date variability. For RQ3, we hypothesize that VSAT will show observable speedups

as sharing increases, which would validate our method of deriving a variational core.

To investigate this, we restrict the analysis to consecutive version variants (i.e., con-

secutive monthly snapshots of a feature model), and observe performance as sharing is

left uncontrolled. Finally, RQ4 provides insight on the overhead incurred by variational

solving, which we investigate by inputting each version variant as a propositional logic

formula rather than a single variational formula for each solver used in RQ2 and RQ1.

6.1.1 Data Description and Encoding

Nieke et al.’s formulas collapse sets of C2 formulas to a single formula using implica-

tions on an SMT variable that represents a moment in time. A two-pass process was

used to translate Nieke et al.’s formulas into VPL—one pass to parse to an internal rep-

resentation and another to detect and convert Nieke et al.’s temporal ranges to choices,

nesting the implied clauses into the true alternative.

The two datasets differ in important ways. The auto dataset encodes four monthly
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snapshots while the fin dataset encodes ten. Hence, the auto’s query formula represents

16 variants, while the fin query formula represents 1,024 variants. For RQ3 and RQ4,

we construct several vc’s to restrict the analysis to version variants. The vcs range from

ones that enable only one version variant (for RQ4): vcauto_V1 = (V1∧¬V2∧¬V3∧¬V4)

to vcs that enable only consecutive version variants (for RQ3): vcauto_V12 = V1 Y V2.

For RQ4 we decouple performance from the number of variants by performing an

initial pass over the query formula to replace choices representing non-consecutive ver-

sions variants (e.g. a variational formula which represents V1 and V2 but not V1 and V3)

with their false alternatives (which contain the value T). Then we construct a vc to forbid

non-version variants. As an example, the auto dataset, yields three data points by this

process, the change from versions V1 to V2, V2 to V3, and V3 to V4. All results presented

for RQ3 were calculated using the z3 [45] SAT solver.

To answer our research questions, we construct four different solving algorithms us-

ing our prototype tool. We use the notation <formula>→<solver> to describe, for each

algorithm, whether the query formulas and solver are plain (p) or variational (v), re-

spectively. The algorithms are: the baseline, p→p, which runs plain formulas on a plain

solver; the variational case, v→v, which runs a variational formula on the variational

solver; the overhead case, p→v, which runs plain formulas on the variational solver;

and the typical case, v→p, which runs the variational formula, variant by variant, on a

plain solver. Inputs for each algorithm are constructed by configuring the query formula,

thus ensuring that the same variation context is used across algorithms.

We construct the p→p algorithm by configuring the query formula to its variants

before benchmarking begins. These formulas are then sent to the base solver one-by-
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one, with the solver begin shut down and initialized between runs, thus preventing the

solver form maintaining any learned information. The p→v case corresponds to RQ4

and elucidates the potential overhead of solving a plain query on a variational solver. We

perform the same pre-processing as the p→p case but send each plain formula to VSAT

instead. This provides insight into the cost incurred by the reduction engine. For v→p,

we configure the query formula to retrieve variants during benchmarking. Each formula

is sent to the base solver with the solver maintaining information between queries. This

gives insight into the overhead incurred by configuring a variational formula, and the

benefits of the internal caching in the base solver. Notable, this case keeps the base

solver running, performing each call in incremental mode, thus this case corresponds

to the typical use of an incremental solver in applications that utilize incremental SAT

solvers.

We construct a variational model for all algorithms since it is unclear how to com-

bine plain models, and since the storage of plain models is an orthogonal concern to

performance, we sought to keep convolved variables constant.

Unless specified, all results are a bootstrapped statistical average representing nu-

merous raw measurements.2 For RQ2 we repeat RQ1 with four different base solvers:

z3 [45], cvc4 [15], yices [46] and boolector [25], each of which called through the

widely used Haskell library [50]. To assess RQ2 we perform a Kruskall-Wallis test [105]

followed by a pairwise Wilcox test [137] with Holm-Bonferroni p-value correction [64]

2Using v0.2.5 of the gauge [106] library and v8.6 of the sbv [50] library with solver seeds set to
1729. All data was collected on a desktop running NixOS 20.09, with an AMD Ryzen 7 2700X CPU
@ 4.0GHz, 32GB RAM.We used stack lts-15.7 (GHC 8.8.3) and tested with RTS options “-qg” which
enables parallel garbage collection in the Haskell runtime.
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in the R programming language [108] v4.0.3 and assume a 5% significance level. For

RQ3, we similarly normalize the data to the baseline (v→p), fit a linear model, and sta-

tistically assess differences by repeating the aforementioned statistical tests. For RQ4,

we retrieve the raw measurements from the bootstrapped average and assess statistical

differences identically to RQ3 but do not fit any models to the data. Furthermore, the

variational input is nuanced for RQ4 as each data point is on a variant, which is neces-

sarily plain. Thus, RQ4 is a special case; for RQ4 v→v inputs the variational formula

but utilizes a variant context to restrict the solver to the version variant. v→p performs

configuration to configure for the version variant and then runs the variant on a base

solver during benchmarking. All results, including variational models and statistical

analysis scripts, are available online.3

6.2 Results and Discussion

The datasets yielded dissimilar query formulas: the auto query formula consisted of

4,212 choice terms (not including terms in a choice’s alternatives), and 26,808 plain

terms. In contrast, fin had 3,809 choice terms, and 1,441 plain terms. Thus fin had larger

changes between product line versions. Fig. 6.1 shows the ratio of unsatisfiable models

to total plain models, and the ratio of constant features for each product line version

(represented by variant count). For both datasets the number of satisfiable models de-

creased as new versions were considered, and the majority of features in each model

never flipped from their initialized value F to T. Thus, the variational model is likely a

3https://github.com/lambda-land/VSat-Papers/tree/master/EMSE2021

https://github.com/lambda-land/VSat-Papers/tree/master/EMSE2021
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Figure 6.1: Ratio of models found to be unsatisfiable.

compressed version of the set of plain models. Compression metrics were not calculated

as this is an orthogonal concern to the performance of variational satisfiability solving.

Variational models permit product analyses without a SAT solver. Fig. 6.1 shows

such a purely syntactic analysis: counting disjuncted clauses in the variational model

as a representation of satisfiable plain models. We believe post-hoc analyses such as

this may be useful to feature modelers as they direct attention to impactful versions of

the feature model. For example, the change from V7 to V8 (128 to 256 Variants) of fin

clearly constrained the feature model as the number of unsatisfiable models increased

from 50% to 80%.

The experiment required 7 days, 6 hours, and 21 minutes to complete. Due to the

amount of time required to generate the data, we limited the number of raw measure-

ments to 3. Thus, each data point presented in our results is a bootstrapped average of 3
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Figure 6.2: (Auto) RQ1: performance as variants increase per base solver. v→v shows
a speedup of 2.8–3.5x for the auto dataset depending on base solver.

raw measurements.

6.2.1 RQ1: Performance of Variational Solving as Variation Scales

The VSAT tool outperforms other algorithms as the count of variants to solve increases

for every base solver. Fig. 6.2 shows the time to solve the query formula as variants

DataSet Boolector CVC4 Yices Z3
auto 3.29 3.51 3.20 2.62
fin 2.44 2.51 2.50 2.16

(a) Speedup by solver for the maximum
variant case; 16 for auto, 1024 for fin.

Boolector CVC4 Yices Z3
623.0 738.6 623.7 862.0
788.8 1026.6 729.2 884.2

(b) Time [s] to solve with v→v by solver.

Table 6.1: Time to solve and speedup of most variational case by solver.
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Figure 6.3: (Financial) RQ1: performance as variants increase per base solver. v→v
shows a speedup of 2.4–3.2x for the fin dataset depending on the base solver. Overlap-
ping x-axis labels elided.

increase from 2 to 16 for the auto dataset for each solver. Similarly Fig. 6.3 shows time

to solve by base solver for the fin dataset.

For the auto dataset, variational solving is faster with an average speedup of 2.60x.

For the most variational case (16 variants) the greatest speedup was found to be 3.5x with

cvc4. The fin dataset shows an average speedup of 4.70x 4. For the most variational case

(1024 variants), cvc4 also showed the greatest speedup at 2.51x. We find that v→v is

statistically different from every other algorithm with p-values of 2.77 × 10−4 (v→p),

1.06×10−2 (p→p), and 1.92×10−2 (p→v) for auto and 1.62×10−5 (v→p), 1.92×10−5

(p→p), and 1.70× 10−4 (p→v) for fin.
4Due to extreme outliers (10x–15.1x speedup) from yices when solving 2–32 variants.
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VSAT outperforms the other algorithms because the variational core caches plain

terms, thereby preventing the re-evaluation of these terms for each variant. By this data,

we observed a constant factor speedup. Thus, variational solving still grows linearly in

the number of variants being solved.

6.2.2 RQ2: Performance Impact of Base Solver

From RQ1 we determined that v→v is faster than the baseline algorithms and that the

difference is statistically significant. We observe from Fig. 6.2 and Fig. 6.3 that the

v→v algorithm is robust across every tested base solver and v→v produced reasonable

results with each base solver. We summarize our results in Table 6.1. Notable yices

was consistently the most performent base solver for all algorithms and all test cases.

For v→v yices demonstrates not only a high degree of speedup but also a reduction of

238.3 seconds, and 132.8 seconds, in run time from z3 for the most variational case of

auto and fin. Thus, yices is an attractive target for the base solver of future prototype

variational SAT solvers.

Cvc4 is also noteworthy; cvc4 benefited the most from v→v for both datasets with

a speedup 3.51x (auto) and 2.51 (fin). The cvc4 case is interesting as it implies that a

base solver which shows poor performance with in the typical use case (v→p; SAT calls

occur in an incremental context, and solver is kept alive) may greatly benefit from the

variational solving algorithm we’ve presented. Although the exact reasons behind this

behavior will be particular to the base solver, these results imply that our use case (i.e.,

heavily exercising the incremental code paths) is peculiar and thus selecting a solver
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based on only its typical performance may not be representative of its performance in

this use case.

6.2.3 RQ3: Performance Impact of Plain Terms

We hypothesize that the ratio of plain terms to total terms should increase the variational

solver’s performance. Specifically, we hypothesize that as sharing grows, the query

formula’s variational core is further reduced. We observe this behavior using the z3 data

in Fig. 6.4. Both v→v and p→p showed a statistically significant fit to a linear model.

Furthermore, only v→v was found to be statistically different from p→p and p→v with

p-values of 6.95×10−3 and 4.44×10−6 thus confirming that sharing positively correlates

to speedups for variational solving in these datasets.

This result is evidence that a dataset’s sharing ratio is an important factor in the

performance of a variational SAT solver, as we hypothesized. When the sharing ratio is

high, the reduction engine produces a smaller variational core. With a smaller variational

core, more reuse of plain terms occurs and thus computational time is saved in the base

solver. Hence, an avenue of future work is to leverage the laws of the variational logic

to automatically refactor input formulas to increase sharing. The consequences of this

observation will be particular to the application domain. For software product lines

this means that any method to increase sharing between product line versions or the

representative SAT problems is desirable; this may be smaller changes with respect to

the entire feature model, more frequent snapshots of the feature model, or syntactic

manipulations to mitigate the occurrence of new features.
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Figure 6.4: RQ3: performance as a function of plain ratio. We observe that sharing
positively correlates to speedup only for v→v, where % SpeedUp = Algorithm

v→p .

6.2.4 RQ4: Overhead of a Plain Query on VSAT

Fig. 6.5a and Fig. 6.5b displays the bootstrapped averages of each version variant, for

each algorithm, and base solver for the auto, and fin datasets, respectively. Given RQ2,

and the composition of fin, we expect VSAT to show slowdowns for fin. This is observed

in Fig. 6.5b and is statistically significant for all versions. For auto, only the V1 version

variant showed a significant difference between the overhead case, p→v, and v→v, and

between the overhead case p→v, and the typical case v→p. Notably, v→v did not differ

from the typical case, v→p. Fig. 6.5a suggests statistically significant differences for

other versions but omits variance, hence the discrepancy between the plot and statistical

tests. That p→v was statistically different for V1 suggests particular formulas may not
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(a) (Auto) RQ4: Overhead of v→v on plain formulas. We observe that v→v incurs an average
slowdown of 9% for auto, when solving a version variant.

(b) (Financial) RQ4: Overhead of v→v on plain formulas. We observe that v→v incurs an
average slowdown of 75% for the fin dataset, when solving a version variant.
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respond well to the reduction engine, although the exact slowdown will be dependent

on the SAT problem.

6.2.5 Threats to Validity

Our results are subject to several threats to validity. Notably, we are unable to make

absolute performance claims because our study, with only two product lines, may not

be representative. To mitigate this we reused real-world data from Nieke et al.’s previ-

ous study [104] and chose dissimilar product lines. We inherit encoding-based threats

to validity by reusing Nieke et al.’s formulas but ensured each algorithm experienced

identical ordering of plain terms as described in Section 6.1.

Our results and our prototype solver are based on the widely used Haskell library sbv.

While sbv is widely used it is still possibly that our performance results are influenced

by sbv and thus we inherit threats from the particulars of the library. However, we

believe this is a likely to be a common implementation strategy for a variational solver

(i.e., a solver built using a library rather than a foreign function interface, similar to tools

built on top of sat4j [85]) it is nonetheless a threat to validity as our prototype directly

depends on this library. To mitigate this threat we maintained the same version of sbv

throughout the experiment, employed it’s interface to interoperate for each base solver,

and enforced the same code paths through the library.

We have evinced the scalability claim with RQ1 and shown the translation and au-

tomation of incremental solving in Chapter 4. However, our results depend on a VPL

formula as input and thus all points of variation must be known before solving. We be-
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lieve that VPL formulas can be incrementally and automatically constructed in practice,

as new variants occur or become known. However, assessing the challenges of VPL

construction is left to future work, which we return to in Section 8.2.

We do not provide a proof of the soundness of the prototype solver. We mitigate

this threat in several ways. We performed property-based testing [36] on our prototype

and verified that a satisfiable variant was found to be satisfiable across all algorithms.

In addition, we define a property that ensures that for each plain model p, found with

p→v, v→p, and p→p, a satisfiable model p ′ was found by substituting p on the vari-

ational model returned from VSAT. We performed the property-based tests with 3,000

generated VPL formulas, finding no counter-examples.

6.3 Variational SMT Results and Discussion

We have shown that the variational SAT solver exhibits speedup for two real-world

datasets and that the sharing ratio of a VPL formula is a significant factor in that speedup.

However, we have yet to show that the same is true for the prototype variational SMT

solver, VSMT.

To test VSMT we use an SMT version of the fin dataset from Nieke et al.’s study. Un-

fortunately, only the fin dataset has an SMT version and so our evaluation of the proto-

type SMT solver is limited. Furthermore, in the course of encoding the dataset to a VPLZ

formula we discovered type errors in 1,514 formulas out of a total of 4,621 formulas. To

utilize the dataset we detected and corrected the type errors during parsing. Each error

was identical and revolved around the encoding of a ONE-OF constraint, where only one
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Figure 6.6: Performance as variants increase for the variational SMT solver.

constraint out of a sequence of constraints can be true. For example, an incorrect version

would be: (fi ≡ 1) ≡ (f0 + f1 . . . + fn) for some i and n. Thus, the error is that fi ≡ 1

yields a Boolean constraint (i.e.≡ has type≡ : arZ → arZ → vZ) but it is the left child

of another≡which expects an arithmetic expression as its left child not a vZ expression.

The correction is to repeat fi and handle the boolean constraint correctly. For example

the corrected version of the above formula is (fi ≡ 1) ∧ (fi ≡ (f0 + f1 . . . + fn)),

where we separate out the left child from the summation but preserve the semantics of

the ONE-OF constraint.

Fig. 6.6 displays the performance of VSMT as variants to solve increases. The

resulting VPLZ formula matched the number of choice and plain terms from the VSAT

version. Similarly, the number of satisfiable variants matched the results for the fin

dataset in Fig. 6.1. VSMT displays a speedup of 1.22x over the baseline v→p at 1,024
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variants. There are two significant differences between the VSMT and VSAT results.

First, the prototype SMT solver does not depend on the Haskell library sbv. Instead,

VSMT uses a foreign-function interface to the C API of z3. Consequently, where sbv

uses strings over stdout to communicate to the base solver, the ffi VSMT achieves

higher throughput by using bytecode. This has several implications, first, the range

of results Fig. 6.6 are measured in seconds rather than minutes such as Fig. 6.2 and

Fig. 6.3. Secondly, the overhead case p→v shows a speedup of 1.71x over the same

baseline and is consistently faster than the variational case v→v. There are several

possible explanations but the exact reason is unclear.

We speculate on possible causes, p→v computes the variant by accumulation/evalu-

ation, reducing the entire variant to a single symbolic and then issuing a CHECK-SAT call.

Thus, any difference between v→v and p→v must come from choice removal. This is

significant because this result may be a case where the extra work induced by the eval-

uation context in choice removal does not yield performance increases. To be specific,

v→v constructs a context to efficiently reuse symbolic values, but if the SMT problem

is very simple or if there exists a tautology or contradiction that is plain, then v→v will

still construct and operate on this context even though each variant does not need to be

computed. Thus, it could be the case that for the majority of variants a contradiction

or tautology occurred and was found by z3 before the variation terms were considered

(before the PUSH/POP calls) and thus any extra work to compute the result for the variant

was redundant.

If an early tautology or contradiction is indeed the culprit, then this could be detected

in a preliminary check. For example, one could replace each choice in the variational



99

core with T and issue a CHECK-SAT to check that the core is satisfiable before computing

the satisfiability of the variants. Alternatively, it also could be the case that particular

sets SMT and SAT problems do not gain as much speedup from variational solving. For

example, they might trigger heuristics in the base solver that simplify the problem space,

and thus do not benefit from variational solving. Detecting such sets would require more

data to understand the interaction between the variational SAT and SMT problems and

the variational solver. However, the overall result, that v→v outperforms the baseline

case v→p, is further demonstration that our methods are effective for the three datasets

we tested.

The last significant result is the magnitude of difference in the runtime between

the variational SMT prototype and variational SAT prototype. Such a difference is to

be expected given their implementation differences, but this difference indicates other

domains where applying variation as a computational concept might be useful. As we

have shown (perhaps unsurprisingly) performance benefits from using the concept of

variation are greater when the cost of a single transaction to the object language is high.

This is the case for the variational SAT solver, since the sbv library communicates to

the base solver process using strings. Thus in the prototype SAT solver, we observe a

greater performance speedup (3.51x) than when the cost is low, such as in the prototype

variational SMT solver (1.22x). This implies that other domains where a transaction cost

is high are likely to benefit from research on variation. These domains might include

network communication, where throughput and response times can be significant, or

file systems and databases, where disk accesses are the limiting performance factor. In

either case, this project successfully demonstrates performance speedups for two real-
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world cases in SAT and SMT solving by employing variational concepts.
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Chapter 7: Related Work

We have succeeded in creating a variation-aware SAT and SMT solver by using plain

SAT and SMT solvers. This chapter situates this work in the larger research context.

Section 7.1 discusses other satisfiability solvers that reuse information and provides a

small history of incremental SAT solving. Section 7.2 discusses other methods to reason

about variability in software product-lines and situates this work in that domain. Lastly,

Section 7.3 compares our approach to other variation-aware systems that have been

invented over the last decade.

7.1 Comparison to Other Solvers and Execution Models

This work is most similar to the Green solver by Visser et al. [131], which also constructs

a SAT solver that exploits shared terms and prevents redundant computation. However,

the projects differ in important ways. Visser et al.’s solver is oriented for program anal-

ysis and does not use incremental SAT solving. Rather, it employs heuristics to find

canonical forms of sliced programs and caches solver results on these canonical forms

in a key-value store [84]. In contrast, variational SAT solving is domain agnostic, solves

SAT problems expressed in VPL, returns a variational model, and uses incremental SAT

solving.

It is also possible to view incremental SAT and SMT solvers and the incremental
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SAT problem as variational systems and as a variational problem. Both are concerned

with efficiently solving instances of problems which by definition share terms and are

therefore related, and thus variational. We provide a small history of incremental SAT

here as it is related work by being the target language of our compiler.

The incremental SAT problem was first defined by Hooker [65], with successive

refinements of techniques by Hachemi Bennaceur [62], and with the assertion stack

idea developed in Kim et al. [76]. The incremental SAT problem was devised as a

solution to verification and optimization problems in electronic design automation such

as covering problems [41], detecting delay faults [75], and model checking [37]. The

first incremental solver to gain traction was SATIRE created by Whittemore et al. [135].

Just two years later, Eén and Sörensson [48] made a major advance in incremental

SAT with MiniSat by defining, documenting, and popularizing the implementation

techniques required for an incremental SAT solver. MiniSat was the result of lessons

learned from work on two other solver’s called SATZOO and SATNIK. MiniSat sim-

plified the existing notions of incrementality from the state of the art incremental solvers

SATIRE and PBS [4] and combined propagation strategies from the Chaff [101]

solver such as conflict-driven backtracking [141] and dynamic variable ordering [101].

These combinations lead to a solver that was performent, and whose implementation

was small and communicative. That same year, the first SMTLIB standard would be

proposed by Tinelli [127] although incremental SAT commands would not be incorpo-

rated until the 2.0 version [14] in 2010.

The use of choices in the variational solvers is similar to the concept of facets by [12]

and faceted execution by [114, 100, 13], in that both choices and facets syntactically de-
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marcate terms in an object language that must be specially handled, and yet must also

operate with terms outside of the choice or facet. Facets are very similar to choices;

facets use a label to determine branches (or alternatives in our language), are synchro-

nized by these labels, and are treated as tree-data structures, similar to our use of choices

and the tag-tree representation of the choice calculus [133]. Lastly, facets are similarly

undetermined until they are reified.

Schmitz et al. [113] define the faceted secure execution framework Multref, which

tries to avoid repeated execution of non-faceted values just as this work tries to gain per-

formance through avoiding repeated execution of plain values. Multref does this

by forking executions threads when a novel facet is encountered. This strategy avoids

redundant execution before the facet is found but still has redundant or repeated compu-

tations of plain terms while inside the fork. In contrast, our methods of accumulation,

evaluation, and utilization’s of a zipper succeeds in only evaluating plain terms a single

time and reusing that information across variants as a variational core and store could

be transmitted to the forked thread. Facets have been employed to policy-agnostic pro-

gramming models and information flow control [111], thus it is possible that our meth-

ods might leak too much information via the shared stores to be useful in that domain.

However, there are other striking similarities, Algehed et al. [2] improves the per-

formance of Multref by defining rewrite rules which manipulate facets similarly to

the equivalence laws presented for choices in Fig. 3.1c. For example, Algehed et al. re-

moves redundant facets through a rewrite rule called Choice Irrelevance, which

is isomorphic to the IDEMP rule in Fig. 3.1c. Another case is definition of Squashes

which find dead branches in nested facets. Squashes are similarly isomorphic to our
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discussion of dominating choices in Section 3.2.

7.2 Reasoning about Variability in SPL

Since SAT solving is so common in software variability applications, many strategies

have been developed to reduce effort in this domain.

Similar to variational formulas, Nieke et al. [104] encode several versions of a fea-

ture model in a single formula. We reuse their benchmark as part of our evaluation

as described in Section 6.1; a direct comparison with their approach is nuanced and

discussed in Section 6.2. While their work focuses on feature-model analysis only, vari-

ational formulas and variational solving can be applied to many application areas.

In the context of family-based type checking [124], others have discussed merging

multiple SAT problems into one. Most work in this area use a local approach where

SAT problems are solved as they are encountered during typing; in contrast, global

approaches collect SAT checks into a single problem that is solved at the end of the

analysis. While the global approach improves efficiency by increasing reuse of learned

clauses in the solver, it loses the ability to identify which variants contain type errors [6,

66]. Variational solving can achieve the reuse benefits of the global approach without

sacrificing the precision of the local approach.

Since the size of SAT problems in software variability applications is often domi-

nated by the feature model, researchers tried to reduce the size of satisfiability problems

by delaying consideration of the feature model until after the analysis and only using it

rule out false positives [23, 38, 88], a technique known as late feature-model considera-
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tion [124]. Bodden et al. [23] found that this technique increases the overall efficiency of

static analysis [23], while Classen et al. [38] found that it actually decreases efficiency

of family-based model checking. Variational solving is orthogonal to these approaches

since the feature model can be excluded from a variational formula and then used later

to rule out false positives.

Feature models can also be reduced in size to speed up analyses, for example, by

slicing [1, 81] or decomposition [116]. It is largely unexplored how much such reduc-

tions can improve efficiency, but the analysis will still involve multiple similar SAT

problems, which can benefit from variational solving.

A final approach is to avoid SAT problems by using modal implications graphs [82],

which support faster reasoning. The idea is to encode as many software variability

constraints as possible in such graphs, then use a SAT solver only for the remaining

constraints. The construction of modal implication graphs already requires solving SAT

problems, but this cost is amortized if many SAT queries will be solved during the

analysis, as Krieter et al. [82] found for configuration processes.

Lastly, our idea of representing variation in a non-traditional formula (a VPL formula

in our case) is similar to the approach by [92], which uses quantified Boolean formulas

to encode variation, and quantified Boolean SAT solvers to detect anomalies in context-

aware feature models. Notably, this approach has the benefit of avoiding incremental

SAT solving altogether.
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7.3 Variational or Variation-Aware Systems

Variational SAT solving is the latest in a line of work that uses the choice calculus to

investigate variation as a computational phenomena. This body of work ranges from

data structures, to graphics, to full fledged systems such as the system presented in this

thesis. Due to the nature of variational problems, many variational or variation-aware

systems employ SAT and SMT solvers. We collect and discuss these contributions here

beginning with variational data structures.

There is relatively little work on variational data structures. Erwig et al. [54] de-

scribes variational sets and graphs. Walkingshaw et al. [134] advocate for research on

variational data structures and explore the trade-offs made in ad-hoc implementations

used in variational systems such as TypeChef [74] and SuperC [60]. For this section, we

focus on recent advancements implementing performent variational stacks and lists. The

goal of variational data structures is to construct a data structure which describes a set of

non-variational data structures and supports efficient variational operations. The varia-

tional artifact is the implementation of the variational data structure, and the variants in

this domain are the plain versions of the data structure or plain values that result from

operating on the data structure. The challenge is to devise a variational data structure

that describes and contains the variation, and provides a set of operations to manipu-

late the data structure that are as close to the performance of their plain counterparts as

possible.

A fundamental tension in this domain is exemplified by work on variational stacks

by Meng et al. [99]. Meng et al. defined two kinds of variational stacks: a stack of
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choices, or a choice of stacks. Their analysis on a general implementation strategy

was inconclusive. They found that depending on the implementation strategy runtime

performance could be affected by as much as 20%. Furthermore, the variation in their

experiment is coarse grained, i.e., the sharing ratio is high. Thus, Meng et al. used

heuristics (optimizations in their paper) which further improved performance for both

kinds of variational stacks by 43%. Using heuristics was also found to be a successful

strategy in Meinicke’s PhD dissertation which we address below.

The work on variational stacks yields an alternative implementation strategy for vari-

ational SAT solvers. We have carefully designed our variational SAT and SMT solvers

to use a plain base solver. We could have done otherwise and implemented a variational

solver directly. With variational stacks the variational solver could use a variational

assertion stack and we would avoid the need for a zipper in choice removal. Such an

implementation is worth considering although by developing an independent solver we

lose any benefits brought by the SAT/SMT communities and lose the general recipe for

constructing a variation-aware system using its plain counterpart.

Similar to variational stacks, Smeltzer and Erwig [121] successfully implemented

variational lists. Smeltzer and Erwig devise six implementations of variational lists with

one implementation, the suffix list coming from previous work [53]. Smeltzer and Er-

wig’s study leads to some surprising results. Out of their six implementations they found

that for some implementations, simple functions such as head (which returns the first

element of the list) are slower than the brute force counterpart because the implementa-

tion may be required to traverse the whole list to resolve the variation. However, they

do conclude that one implementation, the segment list, yields reasonable performance
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given the data in their study. The segment list is an interesting result as the idea behind

the design is to encode variation as a sequence of segments, where a segment is either a

choice or a sequence of plain elements. This idea should sound familiar, as accumula-

tion and symbolic values are essentially pointers to sequences of plain terms. Smeltzer

and Erwig also observe that the sharing ratio has a measurable impact on performance

(a finding we also observed) and thus minimizing or manipulating choices to increase

the ratio is important, a result that has also been observed in SPL by Apel et al. [8]

and Kästner et al. [73].

In addition to data structures there has been research on applications of the choice

calculus to graphics [51], type systems [27, 28, 34, 33], and error messages [32, 30,

33, 31]. For the remainder of this section we focus on variational or variation-aware

systems.

This work is not the first to construct a variational or variation-aware system. No-

tably, Liebig et al. [88] produced TypeChef, which used the choice calculus and varia-

tional data structures to type check every possible Linux kernel. Constructing a varia-

tional parsing [71], a variational lexer [83], type system [88, 72] and control-flow and

data-flow analyses [88]. Similarly, Gazzillo and Grimm [60] variationally parse the

Linux kernel by using variational data structures and choice nodes in the abstract syntax

tree. TypeChef is notable for several reasons: its implementation is a direct inspiration

for our baseline algorithm v→p which uses an incremental SAT solver but only exhibits

sharing before a choice is discovered. This kind of sharing, called prefix sharing by

Smeltzer and Erwig [121] is the de-facto standard in software product-line applications

which employ incremental SAT solvers. Given the results of this thesis, large perfor-
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mance gains are possible if our results are representative with the use of a variational

SAT or SMT solver. TypeChef is also notable for its two step approach, first it parses

source code to find #ifdef annotations, and stores these in files called presence condi-

tions. Presence conditions are isomorphic to variation contexts, both are C2 formula’s

over dimensions (or conditions of the #ifdef) which determine a variant. Using the

presence conditions, TypeChef annotates choice nodes to determine which variant the

leaves of the choice node belong. Then TypeChef extends the symbol table of a C pro-

gram to contain types which are conditional based on the presence conditions. This

allows a variable’s type to change from one variant to another. Each type checking

operation is then lifted to handle the variational cases and then type checking checks

the variation-aware types to ensure every each variant type checks. Similar to our use

of variation contexts, TypeChef allows a variability model which specifies variants that

should be type checked by conjoining the model with the presence conditions.

In his PhD dissertation, Meinicke [96, 97] constructs a variational interpreter called

VarexJ and a variational bytecode transformer called VarexC, to achieve a variational

execution and debugging framework. The framework tries to maximize sharing in two

ways: First, it directly utilizes the choice calculus to represent local points of varia-

tion and achieves a fine-grained approach, this allows the framework to share program

states and keep a unified heap. Second, the framework achieves instruction-level shar-

ing among control-flows between variants. It achieves this by implementing a varia-

tional scheduler, which seeks to order the execution of program statements to optimize

sharing. We achieve this same effect through the interaction between accumulation,

evaluation and choice removal with the wrapped primitive operations. Interestingly,
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Meinicke identifies redundant SAT calls as a major bottleneck in the variational exe-

cution framework. Specifically they determine redundant CHECK-SAT calls as the most

expensive operation in their system. To reduce the redundant calls, the variational ex-

ecution framework caches calls to the solver, thus only employing the solver for new

queries. This technique proved effective for their domain and effectively eliminated the

bottleneck. Lastly, in his PhD dissertation Chu-Pan Wong used VarexJ to do speculative

mutation testing and automated program repair [138]. While not a variational system,

Wong’s work is notable for using a variational system, defining variational expectation

traces, and employing a SAT solver to find interesting mutants to test.

Lastly, choice calculus has been successfully applied to databases to construct a

complete approach for variational databases including a variational database manage-

ment system, a variational query language, and variational tables. Ataei et al. [10, 11]

add choices to relational algebra to define a variational query language for a variational

relational database. The variational query language serves as the variational artifact sim-

ilar to the role of VPL in the variational SAT and SMT solvers. Ataei et al. specifically

choose to avoid adding choices to variational tables, instead opting to apply annotations

to the table schema, table attributes, and table tuples. The annotations are C2 formu-

las and are derived from the dimensions of choices in the variational query language.

Annotations that are attached to an aspect of the database, such as a schema, attribute,

or tuple are called presence conditions following the work on TypeChef. Annotations

which are not attached but describe possible variants are called feature expressions.

This careful design has several desirable properties: The separation between the

variational aspects of the system and the database engine allows the database engine
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to remain mostly unchanged. Thus, Ataei et al. avoid implementing low level details

such as a variational B+-Tree or file system. However the system is still memory effi-

cient: Elements which are shared between variants are represented a single time in the

database. To realize an element is shared, a SAT solver is called on the presence condi-

tions for that element. For example, imagine an attribute that belongs to two variants A

and B , to encode that this attribute belongs to these two variants is expressed in the pres-

ence condition as a disjunction, A ∨ B . Thus, Ataei et al.’s system is a mixed approach;

the query language embeds choices to explicitly represent local points of variation. The

underlying object language (the database in this case) lacks a primitive operation to han-

dle variation such as the PUSH/POP commands in our work. Hence, Ataei et al. choose to

realize variation in the database through indirection based on annotations and SAT solv-

ing. Thereby enabling a full fledged variational database without requiring substantive

changes to the entire database implementation. Therefore, Ataei et al.’s system is more

expressive than the variational SAT and SMT solver’s presented in this thesis because

it can express dependencies between variants through presence conditions, while our

approach is limited to express dependencies by nesting choices.

Notably, a major limitation of our method for variational SAT and SMT solving is

that it requires that all points of variation to be known before running the solver. This is a

direct consequence of VPL; by construction one can only make a VPL formula if a point

of variation is known. If one does not know, or needs to discover the points of variation

at runtime then the VPL formula cannot be constructed. This limitation is a significant

difference from incremental solvers. We return to this point in Section 8.2, but using

variational SAT solvers effectively in these domains is an open research question.
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7.4 Possible Applications of Variational SAT solving

Variational SAT and SMT solving provides an improved user interface and possible

performance gains for variational SAT and SMT problems. However, the space of vari-

ational SAT and SMT problems is largely unexplored, as viewing problems as inherently

variational is only just beginning to gain awareness outside of the software product-line

and variational programming languages communities. In this section we describe areas

for possible applications.

Thüm et al. [126] define two fundamental dimensions of variation: variation in time,

where software is revised over some unit of time with the intent that the new version

will replace the old version; and variation in space, where variants are meant to co-exist

simultaneously. Our approach to variational SAT and SMT solving is able to express

both kinds of variation with the caveat that all points of variation are known before

running the solver. Thus, applications that use a plain SAT solver, that do not need to

discover variation during run-time and that must negotiate variation in time or space are

possible applications for a variational SAT or SMT solver.

Problems in this domain include scheduling problems [22] which need to account

for a counterfactual event; for example, scheduling a set of jobs on a number of ma-

chines but also accounting for one or several machines being unable to take jobs. Such a

problem is directly expressible in VPL where each dimensions corresponds to a machine

being online, or a machine being disabled. Another classic SAT application is circuit

layout and hardware verification problems [22]. In this domain, SAT solvers are used as

the back-end engine to answer safety and liveness questions, such as a S can never reach
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a particular state t , or if S reaches t then it will always reach t ′ [22]. This work could

be directly applied to such problems; for example, one might have two or more circuits

which share significant regions and yet are distinct products with distinct behavior. Per-

forming hardware verification on each circuit would produce two related SAT problems

where the shared portions are redundantly calculated. Thus, one can imagine translating

the set of SAT problems to a VPL formula and solving them with a variational solver.

Another direct application would be performing hardware verification in the presence

of patches; one might encode speculative analyses to ensure desirable properties in the

hardware if regions or elements in the circuit are completely removed, significantly

patched, or stop operating. The particulars in this domain are open research questions.

However given the findings in this thesis, large performance gains are possible through

the use of a variational SAT or SMT solvers.

Software variability is a natural application domain for this work. The variability

of SPLs or configurable software is often reduced to propositional logic [17, 44, 98]

for analysis purposes [21, 124, 57]. Many analyses have been implemented using SAT

solving such as [124], including feature-model analysis [21, 57], parsing [71], dead-

code analysis [122], code simplification [132], type checking [123], consistency check-

ing [43], dataflow analysis [88], model checking [38], variability-aware execution [103],

testing [29], product sampling [95, 130], product configuration [112], optimization of

non-functional properties [118], and variant-preserving refactoring [55]. While each of

these analyses gives rise to multiple SAT problems for even a single analysis run, the

authors typically do not discuss how they are solved. We argue that many could benefit

from variational solving.
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More generally, any scenario that involves solving many related SAT problems, and

where all of these problems are known or can be generated in advance, is a potential

application for variational SAT solving. Such situations arise in program analysis [131],

and especially in speculative program analyses that involve generating and exploring

huge numbers of variations of a program, for example, as in counterfactual [30] and mi-

grational [28, 27] typing. Furthermore, we believe that variational solving could provide

a basis for similar speculative analyses on feature models.
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Chapter 8: Conclusion

This thesis has presented variational satisfiability and satisfiability-modulo theory solv-

ing. In Chapter 1 we defined the success of this thesis as applying the concept of vari-

ation in the domain of satisfiability solving to create a variational satisfiability solver.

The solver must explicitly express the concept of variation in a user-facing language and

must be performant with respect to the performance of plain satisfiability solvers. We

have shown that these ideas work in practice in the domain of satisfiability solving. We

have not only shown that through the application of the choice calculus variation can be

directly expressed by the user, but also performance can be improved if local points of

variation are made explicit, at least for the two datasets we’ve assessed in Chapter 6. To

conclude the thesis, we review the important contributions in Section 8.1. Section 8.2

provides immediate directions for future work.

8.1 Summary of Contributions

The main contribution of this work is the formalization of a method of variational sat-

isfiability solving using non-variational incremental SAT solvers. In Chapter 3 we for-

malized a many-valued logic to express variational SAT problems, and demonstrated an

application of the choice calculus to propositional logic as the object language. We de-

fined the denotational semantics of the logic via configuration, and defined fundamental
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concepts such as variants and synchronization.

In Chapter 4 we formalized the variational satisfiability problem and our approach

to variational satisfiability solving based on this logic. Our approach is to variationalize

non-variational solvers by constructing a compiler to a standardized input format. We

saw that this approach has many desirable properties: First, the stages of accumulation,

evaluation, and choice removal cleanly separate concerns. Second, sharing of plain

terms is guaranteed between variants because we use a zipper to capture evaluation

contexts. Third, since our design integrates plain base solvers, our variational solver can

take advantage of advances made by the SAT and SMT communities.

In Chapter 5 we extended the architecture to handle non-Boolean constraints. We

saw that extensions over the term language follow a pattern: One wraps the primitive

base solver operations to handle symbolic values, then defines a congruence rule to

process the recur on the left child of the relation, and finally defines a computation rule

that calls the wrapped primitive to combine two symbolic values, thereby producing

a fold over the relation. We presented two extensions, one over integer constraints,

and one over array based constraints. Since symbolic values are untyped, we carefully

constructed the extended logic to make type errors inexpressible. Lastly, we saw that

this extension pattern works even for background theories that seem difficult such as

arrays, because our architecture processes plain terms before variational terms due to

the ordering between evaluation, accumulation, and choice removal.

In Chapter 6, we built two prototype variational solvers called VSAT and VSMT. We

evaluated the solvers over two real-world datasets. We observed that variational solving

does produce speedups over standard use of an incremental solver when solving many
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variants for these datasets. The variational solvers produce this speedup by reusing

shared terms and avoiding redundant computation. Furthermore, we observed that the

base solver does have an impact on runtime performance. Therefore, an advantage

of our architecture is that it is base solver agnostic, and implementations may choose

whichever solver is performant for its problem domain as long as the solver accepts

the SMTLIB2 standard. However, we found that when solving only a single variant,

variational solving does show a performance overhead that was statistically significant

for one dataset. Lastly, our finding that the sharing ratio is positively correlated to

runtime performance repeats similar findings in the variational literature as described in

Chapter 7.

8.2 Future Work

There are numerous avenues of future work ranging from novel applications, to refining

the implementations, to extended solvers with new features. In this section, we collect

and discuss the most promising future work, beginning with tool extensions and ending

with generalizing this work to domains other than satisfiability solving.

8.2.1 Utilization of Variational Cores

Variational cores are an important and foundational concept for the variational solver

and consequently for the variationalization recipe. Recall that the purpose of variational

cores was threefold: First, to condense the query formula such that the variational terms
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were the majority of terms in the core. Second, to simplify the choice removal process

by reducing the amount of traversal required to process the choices. Third, to enforce

sharing between variants as the contexts captured by the core are reused during choice

removal.

This last point is key, because variational cores, in combination with the accumu-

lation and evaluation stores, completely capture the context of a formula, they can be

reused in novel ways. For example, one might serialize a variational core and associated

stores to disk, effectively caching the core for future use. Such a feature would enable

desirable user facing features: the solver could restart without losing information and

thus might be useful for debugging or exploration; if the variational cores require a lot of

processing time to generate this time would be amortized, or if the application domain

only builds on previous versions of the same formulas, then the variational core could

be consistently reused for every new version.

For example, consider the case of a feature model which evolves every month for

several months, similarly to the fin and auto datasets. Since the feature model, and con-

sequently the VPL formula, evolves over time, the previous variational core could be

modified to reflect the changes for the new formula. Adding new constraints is straight-

forward; one would simply nest the previous variational core in a conjunction context

(· ∧ new :: core) with the new core and reuse the previous stores when generating

the new core to ensure sharing. A more difficult problem is removing constraints or

variables in the previous core. Both removing constraints and removing variables is

problematic as the variable or constraint could have been accumulated into a symbol

value or several symbolic values. One could traverse a dependency graph to find all
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references of the variable and symbolic value, then seek to replace those references with

a unit value, such as T for ∧ or F for ∨. However, this immediately leads to the prob-

lematic case where the variable or symbolic to be removed is in a ¬ context. There

is no unit value where ¬ does not have meaning and thus we cannot remove arbitrary

variables from a variational core.

In addition to manipulating or storing variational cores, future variational solvers

might use them as a convenient messaging format. Throughout this thesis, we have

assumed and have only considered systems which process all variants in a single base

solver instance, however this need not be the case. Instead, when a choice is in focus

during choice removal one might choose to solve the true alternative variants in a dif-

ferent solver and all the false alternatives in the same solver. For example, a user might

know that all true alternative variants have particularly good performance characteris-

tics for boolector, while all false variants have good characteristics for yices. Since we

compile to SMTLIB2 script, such a feature is possible with few changes to our method

of variational solving. To add such a feature, a future variational solver would allow

the user to select particular solvers over the input vc or the configuration for a query

formula.

8.2.2 Further SMT Background Theories and Tool Extensions

SAT and SMT solvers are attractive targets for research on variational languages. As

of this writing, designing a language with variational side-effects is an open research

problem. The essential problem is tracking effects for particular variants across the
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interface between a variational system and a plain system [3]. For example, imagine

writing a file to disk in one variant and deleting a different file in another variant. Since

the file system has no concept of variation or variant, the variational system is not able

to guarantee variants are isolated, and therefore variants may interact in undesirable and

difficult to predict ways. SAT and SMT solvers side step this limitation as they are side-

effect free systems. There is simply no way to read a file from disc in an SMTLIB2

script. Similarly, classes of traditional run-time errors, such as dividing by zero, are

not possible. If a script divides by zero then the script will not simply not unify and an

UNSAT will be returned.

Due to the attractive properties of SAT and SMT solvers for variational research, a

straightforward avenue of future work is to continue to investigate efficient variational

folds by further extending the variational solvers. Modern SAT and SMT solvers allow

quantified constraints following first-order logic. In this thesis, we have only considered

unquantified constraints, and thus the interaction between quantified constraints and

choices is an open research problem.

Similarly, we have demonstrated extensions for core background theories, but there

are many features of plain solvers that would be desirable additions to variational solvers.

Such features include generation of variational unsatisfiable cores. An unsatisfiable core

is a subset of constraints that prevent the SAT or SMT solver from unifying. Unsatis-

fiable cores are desirable for many problems. For example, one might want to find the

clique in a SAT encoded weighted graph which prevents a traversal under some cost

limit. Or one might want to find the subset of features in a feature model that prevent

classes of products from being built.
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Enabling variational unsatisfiable cores is possible with our approach of accumula-

tion, evaluation, and choice removal. The key requirement would be to ensure that the

plain, GET-UNSAT-CORE command occurs inside the PUSH/POP block for a given variant.

Thus far we have only seen the GET-MODEL command have this property. So a straight-

forward extension is to create a syntactic category that contains useful plain commands

in this context, such as GET-MODEL or GET-UNSAT-CORE, which would be issued to the

base solver once a variant has been reduced to •. Another approach is to create a full

fledged variational SMTLIB2 language instead of expressions of variational constraints

as we have presented here. Constructing such a variational SMTLIB2 language is likely

to save work for future extensions. The language would be identical to SMTLIB2 ex-

cept that PUSH/POP would not be exposed to the user (or would only be enabled with an

option), and choices would be included in the language just as we have included the for

VPL and VPLZ.

Lastly, a promising area of future work is constructing an asynchronous variational

SAT and SMT solver. During our experience bench-marking the variational prototype

solvers we found that the majority of the time spent in the base solver is spent query-

ing for a model. Furthermore, each variant waits until they can be processed by the

base solver. For example, consider the formula f = A〈a, b〉 ∧ B〈c, d〉, which has four

satisfiable variants. Our prototype solvers choose true alternatives first (recuring down

the left child of a relation), thus the order of the variants in the base solver will be

JfK{(A,T),(B,T)}, JfK{(A,T),(B,F)}, JfK{(A,F),(B,T)}, JfK{(A,F),(B,F)}. Notice that each right

variant waits for its left variant before being considered, for example every variant with

{(A,F)} ∈ C is processed after variants where {(A,T)} ∈ C, and similarly so for the
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B dimension. Due to this ordering, the runtime cost of solving right variants includes

the cost of solving the left variants, unless the variation context excludes left variants.

However the problem is tractable, instead of using PUSH and POP to represent variation,

we could instead fork a new solver thread and solve all (A,F) variants on that solver

thread, or mix independent solver instances and incremental solving.

We have created three versions of asynchronous prototype solvers but have not suc-

ceeded in constructing a generalized sound asynchronous variational solver, and thus do

not provide a formalization. In principle, constructing an asynchronous solver is rela-

tively straightforward. Since variational models form monoids, the order in which plain

models are added to the variational model isn’t important. Similarly, since variational

cores capture the evaluation context at a given time, transmitting variational cores to

other solver instances is also straightforward.

The problem for asynchronous solvers is ensuring that the ordering between alterna-

tives is maintained and consequently that variants remain isolated from each other. For

example, a simple model might be to have a pool of producer base solver instances and

a pool of consumers instances. The producer instances could derive variational cores,

and the consumers would take a variational core and a configuration, and find the next

choice that is not in the configuration or generate a model. The two pool model’s appeal

is its simplicity, however a subtle bugs are introduced due to the interaction between

variation and asynchronous workloads.

Assume we have a formula with three unique dimensions A, B, and C which will

be processed in that order, i.e. the same order as the variants of f above. Since the order

of alternatives is no longer deterministic we might encounter a case where we are stuck
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or have mixed variants. Consider the case where there are an unbalanced number of

consumers and producers, with consumers significantly outnumbering producers. Now

consider a scenario where a consumer thread has consumed the {(A,T), (B,F)} core

and then finds a choice with a C dimension. This thread must wait for a request from a

producer thread to mutate its local configuration, thereby configuring for an alternative

and continuing to solve. Suppose the consumer observes a request to consume {(C,T)},

does so, and produces a model for that variant. Now, the consumer will backtrack with

a POP call and wait for another request from a producer for (C ,F). However, this is an

asynchronous environment and so this thread may have out paced other threads. Thus

the next request might be to consume {(B,T)}, and now we are stuck. If the consumer

accepts the request we will have mixed two variants, {(B,F)} and {(}B,T) on this thread

yielding incorrect results, if the consumer does not take the request then we could end

in a deadlock if the scenario is repeated for each consumer.

Such an example is contrived but occurs with asynchronous communication and

must be accounted for. The fix is for each thread to track which variant it has solved and

maintain a stack to track the ordering of choices. We must ensure that the choices are

solved in order such that if a request comes to solve a {(A,T)} variant, and the thread

has consumed the variational core with {(A,F)} then the thread must issue as many

POPs as needed to backtrack. By tracking this information we can avoid deadlocks,

and malformed variants and still gain the benefits of concurrent solving which could

be substantial especially for large variational formulas. Whether the performance gains

outweigh the costs is an open research problem. It simply could be the case that the

runtime cost of forking, inter-process communication, and the cost of avoiding poor
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performing scenarios, such as more than one pop, does not outweigh the performance

gains from asynchronously finding plain models.

8.2.3 Automated VPL Formulas

Thus far we have only considered a VPL or VPLZ formula as input to a variational

solver. This format is likely to be inconvienient as users consider sets of SAT problems.

Thus, a useful extension is to allow a set of SAT problems as input. With the set of SAT

problems, one could synthesize a VPL formula with a sharing ratio that is good enough

and then run the solver on that VPL formula. For the rest of this section, we’ll refer

to the problem of synthesizing a good VPL formula from a set of SAT formulas as the

synthesis problem.

There are several considerations to highlight. First, we found that the sharing ratio

of a formula positively correlates to runtime performance in Chapter 6, echoing results

from previous research on variation. Therefore, the synthesis algorithm should try to

maximize the sharing ratio as it chooses which variants to combine in a choice. Second,

minimizing the number of choices is high priority for the algorithm. Our results indicate

that the runtime of the variational solver grows linearly in the number of variants to solve

(hence exponentially in the number of unique dimensions), thus adding a single new

choice doubles the number of variants and the expected runtime. Rather than provide an

algorithm that finds the best VPL formula, we instead describe a greedy algorithm that

tries to find a reasonable VPL formula. An algorithm that finds the best VPL formula,

e.g. one which maximizes the sharing ratio while minimizing the number of choices is
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an open research problem. We suspect it is at least NP-hard (likely by demonstrating that

the Binary Decision Diagram variable ordering problem reduces to the VPL synthesis

problem), although we have not begun to investigate the problem space.

We need a procedure that inputs two SAT or VPL formulas and returns a fitness met-

ric. There are several possible algorithms, ranging from string edit distance, to a tree

edit distance over the abstract syntax trees of the SAT or VPL formulas. String compari-

son algorithms such Levenshtein distance [86] or Hamming distance [63] are promising

as both have implementations which run in polynomial time. Graph edit distance is a

more direct approach but is NP-Complete with an approximate solution that is APX-

hard [89]. However, most edit distance algorithms work well in practice, and it is likely

that the graph comparisons in this domain are simpler than comparisons which occur

in the worst case, e.g., over enormous graphs such as those found in social networks.

Furthermore there are many heuristics such as longest common sub-string which might

produce metrics that are good enough for reasonable sharing ratios. The exact design of

the informal algorithm described here is left as an open research problem.

8.2.4 Abstracting the Variationalization Recipe to Other Domains

Our approach to creating a variation-aware system by using the plain version of that sys-

tem is not specific to satisfiability solvers. The only portion of our work that is particular

to satisfiability solvers is code generation in the base solver. In essence, our method is

a variational left-fold over a language that contains choices. Thus, one might reuse

the ideas of accumulation, evaluation, choice removal, and variational cores in other
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domains. In particular, the recipe for variationalization to other domains is clear: To

variationalize a plain system one needs to define the variational artifact for the domain

and a method to express variation in that system. Our variational artifact was a VPL

formula and we chose to use scopes from the SMTLIB2 standard to express variation

in the plain SAT solver. Then, one needs a method to express segments of plain terms

and preserve sharing between variants in the plain system, our approach was to define

symbolic values and utilize the internal cache of the plain solvers to preserve sharing.

Lastly, one needs a way to retrieve results and combine plain results in any order, just as

we defined monoidal variational models.

Using this recipe one can imagine a variational Prolog which reuses the work pre-

sented in this thesis. For such a language, the variational artifact would be a prolog-like

programming language with choices. Expressing segments of plain terms with sym-

bolic values could be directly reused from this thesis. Similarly, the variational result

would be nearly identical to the variational models presented in Section 4.4. Embedding

variation in Prolog is the difficult part although there are several possibilities. SWI-

prolog [136] defines a special kind of predicate called dynamic predicates. Dynamic

predicates indicate to the Prolog interpreter that the predicate may change during ex-

ecution. Changing the predicate during execution is performed using two primitives,

assertz and retract. Thus Prolog defines a way to assert a constraint in the interpreter

and then refine the constraint as needed and so dynamic predicates may serve as a viable

primitive for variation in the Prolog interpreter. Another promising embedding is using

delimited continuations. In Chapter 4 we hypothesized that because a Heut zipper is

used for choice removal, using delimited continuations is also feasible as zippers have
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been shown to be isomorphic to delimited continuation [77]. Fortunately Prolog has first

class support for delimited continuations [115] and thus choice removal could be done

in the base Prolog interpreter rather than at the variation-aware level. Using delimited

continuations could greatly reducing the complexity of creating a variational Prolog, so

much so that it might be possible to define variational Prolog as a library rather than

a separate entity. The exact details for a variational implementation are not clear but

creating a variational Prolog is a promising avenue of future work.
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