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Chapter 1: Introduction

There is no doubt that we are in an era of data explosion. In most current data

centers, storage accounts for 40% of the budget [3]. There is an undeniable demand

from data center suppliers to reduce the cost of managing and scaling the diverse

storage solutions. In the storage industry, 60% of companies are committed to

storage defined storage (SDS) approach [6], which brings many benefits to the

industry, including scalability and simplified storage management interfaces.

EMC CoprHD is one of the leading SDS solutions in the industry. It creates an

abstraction layer over multi-vendor heterogeneous storage systems to discover, pool

and automate the management of the storage ecosystem [4]. However, CoprHD

doesn’t generically support all possible storage systems, and its original storage

driver solution requires solid knowledge of CoprHD internals, which is a time-

consuming learning process for third-party developers. To simplify and accelerate

the driver development, EMC proposed a new CoprHD Southbound API. In this

report, I describe the design and implementation of a ScaleIO storage driver based

on this new southbound API. This driver mainly serves two purposes: one is to

testify the design and implementation of the southbound SDK, the other is to act as

an exemplary driver for third-party companies to simplify their driver development

process.

This report will serve as a tutorial of how to develop a storage driver for Co-
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prHD. And it’s organized as follows: Chapter 1 introduces the background and

motivation of this project and gives an overview of our approach. How we applied

agile development process to our project is presented in Chapter 2. Requirement

analysis for the ScaleIO storage driver is discussed in Chapter 3, while Chapter

4 explains the architectural design model of the ScaleIO driver and the detailed

design models of my components: REST client factory, snapshot and consistency

group operations. Chapter 5 introduces the development environment and the

reusable modules. Chapter 6 explains the motivation and implementation princi-

ples of the automated deployment solution, and Chapter 7 discusses the tools and

technologies used for the project. Finally, Chapter 8 concludes this project.

1.1 Background

1.1.1 Software-defined Storage

It’s true to say that hardware has largely defined storage systems and deliv-

ered storage features for over the past 20 years. However, the drawbacks of this

hardware-centric approach are also evident. First of all, there must be another sys-

tem rolled in alongside once a system reaches its capacity, or customers would have

to go through a painful upgrade and migration. Likewise, another set of systems

and processes are also needed to support backup and disaster recovery [14]. What’s

worse, silos are isolated from each other, and each of these silos is optimized to run

a particular workload, which complicates the data center management. Further-
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more, the lack of visibility into data makes storage systems even more complicated

to manage [10]. Simply put, as data volumes grow, storage management becomes

not only complex and inefficient, but also expensive.

Software-defined storage (SDS) differentiates from traditional storage in how

storage is managed and deployed. SDS separates the storage hardware from the

software that manages the storage infrastructure, and it provides a storage service

interface which allows the data owners to describe requirements on both the data

and its desired service levels [2].

Generally speaking, SDS must include the following functionalities [2]:

• Automation: SDS should simplify the management of storage infrastruc-

ture and reduce the cost of storage infrastructure maintenance.

• Standard Interfaces: SDS should define a set of APIs for management,

provisioning, and maintenance of storage devices and services.

• Virtualized Data Paths: Virtualized data paths are Block, File and Ob-

ject interfaces to which applications can write data.

• Scalability: Software-defined storage could seamlessly add new storage de-

vices into the storage infrastructure without maintaining another set of sys-

tems and processes.

• Transparency: Storage consumers should be able to monitor and manage

their storage consumption against available resources and costs.
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Figure 1.1: Software Defined Storage [2]

Figure 1.1 illustrates the concepts behind software-defined storage. Software

developers express their requirements for the data they own via a data manage-

ment interface, such as CDMI (Cloud Data Management Interface). Their desired

service levels can be delivered through a combination of the SDS solution and the

administrators. Currently, SDS aggregates resources into storage pools. To meet

the requirements of service levels, SDS maintains a set of data service characteris-

tics that the storage pools can apply. What’s more, SDS utilizes a standard storage

management interface, such as SMI-S (Storage Management Initiative Specifica-

tion), to automate management of storage resources and discover their capability.

Administrators are also empowered to manage pools, resources and service policies

via abstract interfaces [2].
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1.1.2 CoprHD and its Storage Drivers

CoprHD is a software platform for building a storage cloud. It does not provide

storage on its own, but holds an inventory of all storage devices in the data center

and understands their connectivity [9]. As shown in Figure 1.2, in the northbound

interface, CoprHD can be integrated with traditional, cloud and Cloud Native

Computing stacks. Within CoprHD, self-service provisioning is via REST APIs

and service catalogs. CoprHD as an SDS solution discovers heterogeneous storage

systems and classifies them into virtual storage arrays and pools with storage

policies.

The capability to discover and operate on a storage system is carried out

through the CoprHD storage driver which leverages the southbound API. Fig-

ure 1.3 shows the legacy architecture of the CoprHD storage driver. Currently,

all of the CoprHD drivers are based on this design. This version of CoprHD stor-

age driver is tightly coupled with CoprHD infrastructure. The driver developers

have to know how to work with CoprHD database, zookeeper, task completers and

workflows to develop a storage driver for CoprHD. Thus, this driver model works

for in-house driver development where the developers have a solid understanding

of CoprHD internals but meanwhile is hardly suitable for third party development.

1.2 Overview of Our Approach

To simplify the process of adding support for new storage systems, EMC proposed a

new southbound driver SDK, through which, driver implementation does not have
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Figure 1.2: CoprHD Eco-system

Figure 1.3: CoprHD Legacy Driver Architecture
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any dependency on CoprHD infrastructure or its persistent data model classes. Our

ScaleIO storage driver is based on this southbound SDK. The idea is to leverage

ScaleIO REST API to implement the methods that defined in the SDK. Overall,

our team follows an agile process and performs Test Driven Development. The

driver is verified by unit tests and integration tests, and I also created an automated

deployment solution using Ansible to ease the deployment and testing processes.

1.3 Context within the Project

CoprHD has become open source for contribution since July 2015, and it is under

active development since then. By its “x-wing” release [13], CoprHD makes en-

hancement in many aspects, such as usability and data protection. The following

sections present the contributions related to the storage driver development.

1.3.1 Other Drivers

CoprHD is actively working on integration with cloud and Cloud-Native stacks

through various drivers. Here are some major ones:

• CoprHD driver for OpenStack Integration: Previously in the Open-

Stack environment, CoprHD can only be used as a storage system managed

by Cinder storage controller through a Cinder driver. Now a new driver so-

lution is proposed to position CoprHD as an alternative storage controller

for OpenStack customers [5].
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• CoprHD driver for Ceph Integration: Ceph is a modern distributed

object store and file system in the storage industry. Developers are working

on a Ceph driver to enable end users to handle Ceph volumes via CoprHD.

• CorpHD driver for Flocker Integration: Flocker is an open source

CDVM (Container Data Volume Manager) for Dockerized applications. The

CoprHD Flocker driver empowers CoprHD to deliver persistent storage for

Docker containers via Flocker [8].

1.3.2 Cornerstone of the ScaleIO Driver

• Southbound Driver SDK Development: The ScaleIO storage driver is

dependent on southbound driver SDK. And since southbound SDK develop-

ment was ongoing simultaneously with the ScaleIO driver, any defect found

in SDK will block the corresponding development of ScaleIO driver compo-

nent. The southbound SDK was targeted in CoprHD 2016 Q2 Yoda release

[13].

• Southbound SDK Enhancements: This project aimed at plugging stor-

age drivers into CoprHD via the user interface (UI), which is the ideal solution

for deployment. Our Ansible solution is an alternative solution for it.

• CoprHD and ScaleIO Test Environment: Curt Bruns from Intel created

a Vagrant solution to set up a virtual environment for three ScaleIO VMs and

one CoprHD VM [1]. Our team leveraged his solution to set up three ScaleIO
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VMs as our testing environment. Besides, CoprHD community published

multiple approaches to deploying CoprHD, which is the foundation of my

Ansible solution.

1.4 Contributions

This ScaleIO driver is implemented by a team of four. As the team leader, I led

the meetings to determine and track the progress of each development goal, assur-

ing on-time delivery of the driver features. I also developed a ScaleIORestClient

module and a snapshot operation module for the ScaleIO storage driver. Regard-

ing deployment, I created an Ansible solution for CoprHD and its storage drivers.

Meanwhile, I would like to acknowledge my team members for their achievements.

Varun Rajgopal implemented the discovery functionality, Taylor Cuilty developed

the standard volume operations, and the clone operation module was implemented

by Prathamesh Patkar.

This ScaleIO driver project has served the following purposes. It revealed

the defects of the southbound SDK which can be fixed before other third-party

developers started developing their CoprHD drivers. And as an exemplary driver,

it simplifies the development process for third-party companies.
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Chapter 2: Development Process

2.1 Test Driven Development

Our development process follows Test Driven Development (TDD) and is also

associated with agile methods. Namely, our development of a feature consists of

several iterations, where the test cases are written before the feature is deployed.

The development process usually refers to following steps: to identify the initial

requirements; to write unit tests that fail before writing any functional code; to

write functional code until all unit tests pass; if necessary, to refactor the code

or the tests to assure all the updated requirements are met. Additionally, to

ensure that the addition of a new feature or refactoring of the code doesn’t break

the features already delivered, the tests are run as part of a regular process for

building the driver.

One of the benefits of the approach is it allows us to expose issues regarding

requirements in early stage since test cases could help define the scope of this

driver project. Also, we sent the test plan to the community for review before we

start writing code, and the feedback confirmed that our test cases covered all the

required functionalities. TTD process also reduced the number of bugs since it

assures that the code, for which tests were deployed, works [16].
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2.2 Team Collaboration

As I mentioned earlier, one of the missions of the ScaleIO storage driver is to

evaluate the design of the southbound SDK. Our team started with the first version

of the SDK, while EMC southbound SDK team is working on SDK development

as well as the driver support layer. As shown in 2.1, any update on southbound

SDK from the EMC team will trigger an iteration of the driver development.

Likewise, any issue we found in the SDK will be reported to the SDK team, and

the corresponding feature development of the driver will be blocked until they fix

the issue.

Figure 2.1: Development Cycle

Further, driver integration test involves more collaborations. Many issues can
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only be exposed during this period. Any modification made in the adaption of

generic CoprHD storage driver API to the specific operations of ScaleIO array will

result in the redeployment of SDK, ScaleIO driver and even the CoprHD instance.

This repeating process is also the primary motivation for the Ansible automated

deployment solution, which I will discuss in the later chapter.
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Chapter 3: Analysis and Requirements

The goal of requirement analysis is to understand what mission a ScaleIO driver

attempts to accomplish and what approach is adopted to reach this aim. You

will find the high-level system architecture of our approach to ScaleIO driver in

section 3.1 and the components of the southbound SDK in section 3.2. Section 3.3

explains the functionality that we have implemented in the ScaleIO driver.

3.1 Top Level System Architecture

Figure 3.1: Top Level System Architecture

As shown in figure 3.1, our approach decouples the storage driver from the
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CoprHD infrastructure, and all the driver calls will be invoked from the southbound

SDK support layer. To implement a CoprHD driver, what we need is to implement

the interfaces that are defined in the southbound SDK and utilize the ScaleIO Rest

API to interact with the ScaleIO storage system to perform the required operations.

3.2 Components of Southbound SDK

Figure 3.2: Southbound SDK Components

Our driver development is tightly dependent on the SDK. The CoprHD com-

munity releases the draft version of the southbound SDK jar through the wiki

page, which as shown in figure 3.2, includes the following artifacts [15]:

• Set of interfaces which the drivers have to implement

• Set of object model classes which are utilized in interface methods
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• Interfaces for CoprHD services available to storage drivers

• Supporting classes

• Public libraries used by the SDK

• Abstract base class for the storage drivers

3.3 ScaleIO Driver Functionality

The ScaleIO driver supports storage system discovery and block storage operations.

Discovery of storage systems refers to the actions to register ScaleIO storage sys-

tems into CoprHD, after which CoprHD is capable of managing these registered

storage systems. However, a ScaleIO storage system does not necessarily register

as one storage system in CoprHD. Instead, each protection domain in ScaleIO can

be viewed as a storage system. Moreover, once discovery operation is completed,

the information of protection domain together with the corresponding pools and

ports are exposed to users via the CoprHD UI. Afterward, CoprHD will perform

discovery periodically to check the connectivity between CoprHD and its storage

systems. Note that during our driver development, the CoprHD UI does not sup-

port discovery operations from the SDK driver, so discovery request made through

CoprHD command line tool. Eventually, users will be able to give system creden-

tials through CoprHD UI to register a storage system.

Block storage operations contain but are not limited to volume, clone, mirror

and snapshot operations, and they are not independent. One example is volume
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Table 3.1: Snapshot Operations Requirement Analysis

creation must be executed before any clone, mirror or snapshot operation. To get

rid of the shackles of execution orders, we employ the ScaleIO command line to

perform necessary block operations so that the implementation of the operations

with higher priority do not block the ones with lower priority. The block operation

request flow starts from the CoprHD UI and is sent to the SDK driver through

southbound SDK support layer. Unlike discovery operations, a block operation

might be invoked by multiple users simultaneously. Therefore, our driver must be

capable of handling concurrent requests, which Chapter 4 will cover.

Although we have to implement all the interfaces that are defined in the SDK,

not all of the functionality is supported in ScaleIO storage system. For example,

ScaleIO storage system does not support mirror operations. Table 3.1 is an example

of how we examine the functionality of ScaleIO towards the southbound SDK.
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Chapter 4: Design

4.1 The Architectural Design Model for the Driver

Figure 4.1: Driver Class Diagram

A CoprHD storage driver consists of two components: storage system discovery

and block storage operations. As shown in figure 4.1, ScaleIOStorageDriver class

extends AbstractStorageDriver class, and it has to implement all the methods de-

fined in DiscoveryDriver and BlockStorageDriver interfaces. AbstractStorageDriver
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class also reserves a registry service for the driver to store necessary information in

CoprHD, such as system credentials. In addition, the ScaleIO storage driver relies

on ScaleIO REST API to perform the storage operations, so a ScaleIORestHandle-

Factory class is created to obtain a ScaleIORestClient instance for each request.

The ScaleIO REST component will be discussed later. Further, a public logger

library is also shipped in the southbound SDK jar to log the status of each key

step of a driver operation for both debugging and maintenance purposes.

Figure 4.2: Driver Work Flow

Figure 4.2 demonstrates a workflow of ScaleIO driver:

1 Driver receives a request to discover a ScaleIO storage system. Protection

domains are registered as storage systems in CoprHD, and the system cre-

dentials are stored in the registry service.
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2 On receiving a request of a block operation, the driver sends another request

to the registry service to retrieve the system credentials.

3 The registry service sends system credentials back.

4 The driver calls ScaleIORestHandleFactory to obtain a ScaleIORestClient

instance based on system credentials received.

5 ScaleIORestHandleFactory returns a corresponding ScaleIORestClient instance.

6 The block operation requests are handled by the ScaleIORestClient instance.

4.2 The Detailed Design Model

4.2.1 ScaleIORestClient Module

The ScaleIORestClient component is the most important module for the ScaleIO

storage driver. It turns storage requests into REST-ready and delivers them to the

ScaleIO storage system. This module is also a use of the singleton design pattern.

We maintain a ConcurrentHashMap variable to store a REST client instance for

each storage system, and the singleton design pattern guarantees that only one

ConcurrentHashMap variable is in the application runtime. Figure 4.3 illustrates

the steps to obtain a ScaleIORestClient instance.

ScaleIORestClient module also implements the abstract factory design pat-

tern. As shown in Figure 4.4, RestClientFactory is an abstract factory class that

defines interfaces to create REST clients. CoprHD could have any number of de-
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Figure 4.3: Activity Diagram: ScaleIORestClient
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Figure 4.4: ScaleIORestClient Module Class Diagram
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rived concrete versions of the RestClientFactory like ScaleIORestClientFactory and

IsilonRestClientFactory, each with a different implementation of createNewRest-

Client() method that would create a corresponding instance like ScaleIORestClient

or IsilonRestClient. Both ScaleIORestClient and IsilonRestClient are derived from

an abstract class - StandardRestClient. CoprHD does not care which concrete

REST client instance it gets from the factories, since it only uses the generic in-

terface - RestClientItf.

4.2.2 Snapshot and Consistency Group Operations

Figure 4.5: Snapshots and Consistency Groups in ScaleIO [7]

ScaleIO offers the ability to snapshot a single volume at a time, and the struc-

ture related to all the snapshots generated from one volume is referred to as a
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VTree (short for Volume Tree). It’s a tree spanning from the source volume as

the root, and the snapshots are presented as the children of the parent volumes

[7]. Note that it is allowed to take a snapshot of a snapshot volume. In figure

4.5, Snapshot 111 and Snapshot 112 are snapshots of Volume 1. Snapshot 121 is a

snapshot of Snapshot 111. Together, Volume 1, Snapshot 111, Snapshot 112 and

Snapshot 121 are the VTree of Volume 1. Users can remove the entire VTree or

snapshots rooted at the same volume with one command.

Further, a snapshot is a new unmapped volume once it’s created in the system.

Namely, snapshots may be manipulated in the same manner as any other volume

by the ScaleIO storage system [7]. However, unlike standard volumes, snapshots

are thin-provisioned, which means that the full copy of the data is not copied over

upon creation, but when it is mapped.

All snapshots taken together automatically form a consistency group in the

ScaleIO storage system, and they are consistent in the sense of their creation time,

which helps the situation where multiple VMs need consistent copies of multiple

volumes but the source application may not able to be quiesced at the time. How-

ever, ScaleIO does not prevent you from deleting one snapshot in a consistency

group. In figure 4.5, Snapshot 112 and Snapshot 211 compose a consistency group

if they are taken together.

In CoprHD, before the user fires off a request to create consistency group snap-

shots, a consistency group which contains several volumes should exist. However,

ScaleIO does not allow creating a consistency group explicitly. To qualify CoprHD

for ScaleIO consistency group operations, we create a dummy empty consistency
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group as shown in figure 4.6. After that, users can add volumes in the group and

snapshot-ing the entire consistency group. The idea is to store the dummy consis-

tency group identifiers to the registry service and map them to their corresponding

consistency group ID once the consistency groups are formed in ScaleIO.

Figure 4.6: Sequence Diagram: Create consistency Group vs Create consistency
Group Snapshots

Our team also agrees on a general workflow for the ScaleIO block storage op-

erations. Figure 4.7 demonstrates the workflow for snapshot operations. At the

beginning of each operation, we log the location and the starting time of the re-

quest, and then prepare and send the request via ScaleIO REST client. Once it

gets the response, we will populate the information to involved entities that are de-

fined in SDK model classes. If any exception occurs, it will be thrown and handled

by the SDK support layer.
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Figure 4.7: Activity Diagram: Create snapshots
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Chapter 5: Implementation

5.1 Development Environment

Figure 5.1: Development Environment

The development environment for the CoprHD driver implementation is com-

posed of Integrated Development Environment (IDE) and the test environment.

The IDE is usually installed and configured locally to avoid any inconvenience

caused by the internet, while the test environments are placed remotely to allow

access to larger storage resources. During the ScaleIO driver development, we only
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performed unit tests to verify the functionality of the driver. Those unit tests

directly interact with the ScaleIO test cluster and are independent of the CoprHD

infrastructure. Our ScaleIO test cluster is set up in Virtualbox following Curt

Bruns’s Vagrant solution. However, unlike his solution to configure the cluster

locally, we deploy it to a remote server to have sufficient storage to test on.

Since during the integration test, all the driver operations are invoked from

CoprHD UI, a CoprHD instance is required in this period. CoprHD community

posts some how-to articles to guide developers to build and run a CoprHD instance

from scratch , and we adapt it to our OpenStack environment. However, this

solution is problematic and requires painful occasionally debugging, which leads

to the creation of my Ansible solution.

5.2 Reusable Modules

As the first team outside EMC to develop a CoprHD driver, we are a trial run

for future third party developers. One of our missions in this development process

is to identify the items that would be challenging or time-consuming for a third-

party developer and figure out a way to speed up the overall driver development.

To determine the reusable modules is one of our achievements. Here are some

reusable modules:

• Error Handling Modules: Containing CoprHD service error models and

generic exception interfaces.

• Service Utils Modules: Including but not limited to REST utils, such
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as generic REST client interfaces, abstract classes of REST client factory,

standard REST client, etc.
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Chapter 6: Deployment

6.1 Issues with CoprHD Deployment

CoprHD deployment is error-prone for a variety of reasons. First of all, there are

hundreds of branches in the CoprHD repository and a high number of commits are

pushed to different branches every day, some of which are merged to the master

branch, resulting in various levels of code changes. Our test branch is based off the

master branch, so occasionally we need to update the branch with the up-to-date

master branch. Although CoprHD employs Jenkins automation server, which will

trigger a CoprHD build whenever a commit pushed to the repository and refused

the commit if the build fails, the server does not detect the deployment issues

beforehand.

Another cause of deployment failures is the version updates of the software

packages on which CoprHD depends. CoprHD requires pre-installation of over one

hundred packages on the hosted system, some of which are re-installed in every

deployment. The scripts that the CoprHD community employed do not specify the

versions of the software packages, and they are also not aware of failed installation

of one package.
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Table 6.1: Ansible Major Playbooks

6.2 CoprHD Deployment with Ansible

Ansible is a very powerful open source automation language aiming to deliver high

productivity for a broad range of automation challenges in many respects, espe-

cially suitable for systems that involve multiple software packages and extensive

custom coding. Table 6.1 lists some playbooks I wrote for the major deployment

tasks. Playbook coprHD-env-setup.yml prepares a hosted system environment

for CoprHD, while playbook coprHD-deploy.yml downloads CoprHD repository to

the hosted system and carries out the steps to build and run CoprHD. Ansible

allows specifying the versions of the packages and the commit of the adopted Co-

prHD branch in the playbook, and when the playbook is executed, it prints out

the recap of the deployment sub-tasks and stops at where it fails. Therefore, this

plot-like deployment brings exceptional benefits towards debugging, and it’s also
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less error-prone.

6.3 Driver Deployment

The manual deployment of the CoprHD driver follows the steps below:

1 Log in to the CoprHD instance via ssh.

2 Update multiple configuration files in different places. All these configuration

files will be reset if the CoprHD instance is re-deployed.

3 Build the driver into a jar file and upload to the CoprHD instance.

4 Restart the CoprHD services.

5 Start the testing driver.

Similarly, this manual deployment is not only time-consuming but also error-

prone. For example, it’s relatively easy to make mistakes while modifying the

configuration files. Playbook scaleio-driver-deployment.yml in table 6.1 automates

the process to deploy the driver, with which, we can deploy the driver by one

command. However, it is desired to deploy the storage driver though the CoprHD

UI, and hopefully, we can do that in the near future.
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Chapter 7: Tools and Technologies Used

As an open source project, CoprHD uses many software development and collab-

oration tools to help the CoprHD contributors across the world. Table 7.1 lists

the major tools we used during our driver development. One of the advantages of

these tools is that most of them are integrated into one site, where contributors

can quickly switch one tool to another. The CoprHD community also maintains

a website to collect CoprHD resources and latest news, which not only lowers the

threshold for new contributors but also makes it easier for people to track the

overall status of CoprHD. Communication tools like Hipchat ensure timely com-

munication and assistance from CoprHD experts. The project management tool

JIRA facilitates checking the status of issues or desired features through a unified

platform. The automation server Jenkins relieves developers from the wearisome

part of the software development process, such as continuous integration. CoprHD

handles deployment via Bash script, but I believe Ansible is a better option.
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Table 7.1: Software Development and Collaboration Tools
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Chapter 8: Conclusions

Let us reconsider our process to develop a ScaleIO driver for CoprHD. First, we

examined the methods defined in the southbound SDK to determine what opera-

tions are expected in the driver. Then we studied the ScaleIO storage system to

understand which methods are supported. With the requirements in mind, we cre-

ated unit tests, which were approved by the community later, for each supported

method. And then comes the most important process of the driver development

- driver design. We first decided to make use of the ScaleIO REST API to per-

form storage operations. Following that, we confirmed the high-level system design

and then split it up to detailed design for each component. Regarding the snap-

shot module, my job includes verifying the input/output with the SDK team,

understanding the ScaleIO snapshot operation and creating the code flow. I also

determined the design patterns in this period. After design, implementation of the

driver became straightforward. Integration test was the final process to verify the

storage driver.

I have achieved the following aims in this project: a tutorial for CoprHD stor-

age driver development; some essential components of the ScaleIO storage driver

including the ScaleIORestClient module and the snapshot operation module; an

Ansible deployment solution for CoprHD and its driver.

This work has made the following contributions. It identifies the challenges for
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third-party developers during driver development and creates a test-out solution

for them. It revealed SDK bugs that got fixed before other third-party developers

started writing CoprHD drivers. Most importantly, this work creates a ScaleIO

storage driver which will serve as a template driver for third party developers and

accelerate their development process.
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