AN ABSTRACT OF THE THESIS OF

Fariba Khan for the degree of Master of Science in Computer Science presented on

March 11, 2021.

Title: Formal Verification of the Variational Database Management System

Abstract approved:
Eric Walkingshaw

Variation in data is abundant and ubiquitous in real-world applications. Manag-
ing variation in databases is, however, difficult and has been extensively studied by the
database community. Schema evolution, data integration, and database versioning are
examples of well-studied forms of database variation with effective context-specific so-
lutions. However, variation appears in different forms and contexts in databases, and
existing approaches cannot be generalized to handle arbitrary forms of variation irre-
spective of the context. Moreover, in practice, different forms of variation intersect in a
particular context. Variational databases (VDB) provide a fundamental solution to vari-
ation management by explicitly encoding variation into relational databases that allows
addressing different kinds of variation simultaneously. To support expressing variation in
information need, traditional relational algebra (RA) is extended to variational relational
algebra (VRA). VRA comes with a static type system that checks the validity of varia-
tional queries written in VRA. This thesis extends the formalization and formally verifies
properties of the variational database management system (VDBMS). Variational sets
and set operations definitions are formally verified and VDBs are formally encoded using
them. Then, the correctness of the VRA type system with respect to the RA type system
is formally specified and verified. VDBMS also allows writing variational queries with-
out repeating variations that are already encoded in the VDB and sub-queries. These
implicitly annotated v-queries get explicitly annotated by the system. Therefore, this

thesis further formally verifies the process of explicitly annotating variational queries.

©(Copyright by Fariba Khan
March 11, 2021
All Rights Reserved

Formal Verification of the Variational Database Management
System

by

Fariba Khan

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented March 11, 2021
Commencement June 2021

Master of Science thesis of Fariba Khan presented on March 11, 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Fariba Khan, Author

TABLE OF CONTENTS

1 Introduction

2 Formal Encoding of Variational Database

2.1 Variation Encoding and Variational Elements
2.1.1 Features and Feature Expressions
2.1.2 Configuration/Variation Elimination

2.2 Relational Databases

2.3 Variational Databases
2.3.1 Variational Set
2.3.2 Variational Schema
2.3.3 Variational Database Content

3 Formal Encoding of Variational Queries
3.1 Variational Relational Algebra(VRA)
3.2 VRA Type System
3.3 Correctness of VRA Type System

4 Formal Encoding of Implicitly Annotated Variational Queries
4.1 VRA Type System for Implicitly Annotated V-Queries . . .
4.2 Explicitly Annotating V-Queries
4.3 Correctness of Implicit VRA Type System

5 Related Work
6 Conclusion and Future Work
Bibliography

Appendices
A Formal Encoding of Variational Set
B Formal Encoding of Variational Query
C Formal Encoding of Implicitly Annotated Variational Query

Page

31
31
36
43

45
46
48
50

o4

o6

o8

Figure
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

3.1

3.2

3.3

3.4

3.5

4.1

LIST OF FIGURES

Page
Feature Expression Syntax. L 0oL 7
Feature Expression Configuration. 8
Feature Expression Properties. 9
Variational Set Configuration. 12
Annotated Variational Set Configuration. 12
Variational Relation Schema(V-Relation Schema) Configuration. 26
Variational Schema(V-Schema) Configuration. 26
Variational List Configuration. 28
Variational Tuple(V-Tuple), Variational Relation Content(V-Relation Con-
tent), Variational Table(V-Table), and Variational Database(VDB) In-
stance Configurations. 29

Variational Relational Algebra(VRA) Definition. e and o denote compar-
ison (<, <,=,#,>,>) and v-set operations (N,U), respectively. b repre-
sents boolean values, a denotes plain attributes and k£ denotes constants. 32

Variational Condition(V-Condition) and Variational Relational Algebra(VRA)
Configuration. V-condition and v-query are assumed to be well-typed by

the configuration functions. L. 35
Variational Query(V-Query) Type Configuration. 36
Variational Relational Algebra(VRA) Typing Relation. The typing rule

of a join query is the combination of rules SELECT-E and PropucT-E.. . . 38
Variational Condition(V-Condition) Typing Relation. 39

Implicit Variational Relational Algebra(VRA) and Variational Condition(V-
Condition) Typing Relation. The typing rule of a join query is the com-
bination of rules SELECT-E and PrRoDUCT-E. 47

LIST OF FIGURES (Continued)
Figure Page

4.2 Explicitly Annotating Implicitly Annotated Variational Queries(V-Queries)
w.r.t. Variational Schema(V-Schema). V-queries passed to this function
are assumed to be well-typed. oL L. 49

Chapter 1: Introduction

The difficulty of managing variation is a widely recognized and highly studied problem
in the database community. Variation is ubiquitous in nature and society, so it is not
surprising that it is ubiquitous in the real-world applications that databases are applied
to. However, variation has not been studied as a general concept in databases. Instead,
many specific kinds of variation have been addressed by research on schema evolution,
data integration, and data versioning. There is a lack of widespread acknowledgment that
these are solving different facets of a general problem, potentially with a generic solution.
Consequently, variation scenarios that do not fit neatly into one of the scenarios addressed
by these well-studied facets must still resort to expensive manual workarounds. Another
phenomenon that is common in databases but has not been generally addressed is when
different kinds of variation interact. For example, variation can occur in both space
and time dimensions in database-backed software produced by software product lines
(SPLs) [3, 10, 34, 7]. This thesis extends formalization and formally verifies properties
of the Variational Database Management System (VDBMS) [6, 7, 5], which provides
a framework for expressing variation in relational databases. The main advantage of
VDBMS is that its encoding of variation is generic and explicit, making it suitable for
all kinds of variation in relational databases, and for the interactions of multiple kinds of
variation. Formal encoding and verification in this thesis are done in Coq proof assistant
[33].

Variation in databases appears in different levels and dimensions. Databases can
vary in the level of their structure (i.e. schema), their content, as well as the queries
applied to them. This variation can also happen in two dimensions—time and space.
Variation in time refers to changes in the schema, content, or queries of the database
over time. Schema evolution and data migration are two well-studied and well-supported
forms of database variation in time [27, 11, 4, 32, 29]. Typically in these works, historical
changes to the schema are documented in an external document [29] or tracked through
timestamps attached to the database [27, 11, 4, 32] so that data can be safely migrated

forward towards new versions. They also provide convenient ways to write temporal

queries on these temporal representations of databases [21, 32]. On the other hand, vari-
ation in ”space” refers to the variations that exist in parallel. Work on variation in space
exists in the context of data integration [14] which provides a unified interface to query
combined data from different sources. Database versioning supported through [8, 19] is
another example of variation in space where variation occurs in the level of content and
query. Schema evolution, data migration, databases integration and database version-
ing are specific instances of database variation where variation occurs in some level and
dimension. However, different instances of variation can also interact with each other in
a specific context.

Database-backed SPLs are an example where database variation in time and space
dimensions interact with each other [1]. SPL is an approach to mange variation in
software. All supported features of a software system are developed and maintained
in a common code base. Variants of the software known as products of the SPL are
created by enabling and disabling features based on user requirements. Consequently,
databases for products structurally differ from each other in the form of inclusion and
exclusion of tables and attributes based on selected features. However, in practice,
many SPLs use a single database representation with all tables and features included.
Shipping the same database with each product is not efficient, error-prone, and results
in lots of null values because of disabled features in individual products [7]. Lots of
work has been done to manage structural variation in space in SPLs. One approach is
to model data variability in SPLs [2]. The universal data model links SPL features to
concepts in the data model and specialized data models can be generated for products.
These specialized data models later can be realized as specialized database schemas [22].
Another solution provided in [20] presents a tool that can generate a schema variant for
each product from the universal schema by maintaining connection between SPL features
and schema elements. However, none of these works consider content-level variation
in SPL, nor do they provide support to express information need over databases with
structural variations. In addition to variation in space, SPLs also evolve over time as a
result of inevitable software evolution. Hence, the shared database needs to evolve over
time as well [18]. Variation in time in an SPL database has been separately addressed
by adapting existing work on database evolution [18] which, however, cannot encode
variation in space.

The partial support for managing variation in SPL databases highlights a gap in re-

search to support the interaction of database variation. In general, in database variation
management research, solutions are tailored to specific instances, for example, schema
evolution, data versioning, data integration, or model variability for model-oriented in-
stances like SPL. They cannot be generalized to manage any instances of variation or
to support variation interaction among different instances. VDBMS fills these gaps in
database variation management research.

VDBMS considers variation as an orthogonal concern, which enables encoding differ-
ent forms of variation directly into the database. Although application-specific solutions
might perform better at their niches, VDBMS can be used irrespective of contexts and
facilitates interaction among variations that has not been addressed before. In essence,
a variational database represents multiple plain relational databases that differ in their
structure and content, possibly both in time and space, and encodes the variability
explicitly within the database.

Variational databases are defined based on variational sets [16]. This thesis formally
encodes variational set and its operations, formally defines and encodes variational set
properties, then provides a formal proof of correctness of variational set union and inter-
section operation. Then, it formally encodes variational databases with the formalized
variational sets.

Moreover, VDBMS provides a query language that accounts for variation directly.
To support writing variational queries, traditional relational algebra (RA) is extended
to variational relational algebra (VRA) by incorporating choice calculus [35]. Varia-
tional queries written in this extended algebra can express the same intent over different
database variants or different intents over different database variants in a variational
database. In other words, like variational databases, variational queries also represent
multiple plain queries. Due to their extended expressiveness, variational queries are more
complicated than plain relational queries. Therefore, VRA is coupled with a static type
system to check the validity of variational queries in terms of their compliance with the
variation encoded in the schema and content of the targeted variational database.

The VRA type system describes the structure of the result of running a variational
query on a variational database. For the VRA type system to be correct, it must preserve
variation encoded in variational queries. In other words, the variational result of running
a variational query on a variational database must be equivalent to running each variant

of the variational query on the corresponding variant of the database. With variation

preservation property, VRA type system ensures that each query-database variant is
compatible. The variation preservation property along with RA’s type safety [30] ensures
that VRA is also type safe. This thesis, therefore, provides a formal encoding of VRA
and its type system and provides a formal proof of the VRA type system’s variation
preservation property.

Moreover, to be more user-friendly, VDBMS provides an implicit way of writing vari-
ational queries. The idea is that users should not be burdened with including information
that can be inferred from the variational schema or from information encoded elsewhere
in the query. With this in mind, implicitly annotated v-queries allow not repeating vari-
ation already encoded in the variational schema and sub-queries by omitting presence
conditions that can be inferred. Users are only required to include additional conditions
or constraints they want to impose. These implicitly annotated variational queries get
explicitly annotated by the system with variation inferred from the underlying varia-
tional schema and sub-queries. Typing of implicitly annotated variational queries, done
by the implicit VRA type system, therefore must allow and account for implicitness. To
prove the correctness of the implicit VRA type system, it is necessary and sufficient to
show that if an implicitly annotated variational query is well-typed in the implicit VRA
type system, then its explicitly annotated counterpart is also well-typed in the VRA type
system, and that these types are equivalent. This thesis formally encodes the process
of explicitly annotating variational queries and provides a formal proof of correctness of
the implicit VRA type system with respect to the VRA type system.

The following chapters elaborate the contributions of the thesis. Here is the list of

contributions along with the respective chapters and sections that discuss them.

e A formal encoding of variational set and its operations, formal definition and en-
coding of variational set properties, and a formal proof of correctness of variational

set union and intersection operations. (Section 2.3.1).

e A formal encoding of Variational Database (VDB) and its configuration functions
that eliminate variation from VDB (Sections 2.3.2 and 2.3.3).

e A formal encoding of Variational Relational Algebra (VRA) and its type system,
and the configuration function that eliminates variation from variational queries
written in VRA (Section 3.1, 3.2).

e A formal verification of the VRA type system that guarantees the variation preser-

vation property of the type system (Section 3.3).

e A formal encoding of the implicit VRA type system (Section 4.1) and the explicitly
annotating function that explicitly annotates the implicitly annotated variational

queries(Section 4.2).

e Finally, a formal verification of the implicit VRA type system with respect to the
VRA type system (Section 4.3).

Chapter 2: Formal Encoding of Variational Database

A Variational Database (VDB) extends a traditional relational database and represents
many variants of a single relational database by capturing where each variant differs
from the others. Any database element, therefore, has a conditional presence in the
variational database with respect to the variant or variants it belongs to. These presence
conditions are encoded explicitly into the database by annotating each element with

their respective presence condition.

2.1 Variation Encoding and Variational Elements

Variation is encoded in a database by making its elements’ presence conditional. The
presence condition of elements is implemented through annotation of elements with fea-
ture expressions (Section 2.1.1) which are basically boolean expressions. Feature expres-
sions are evaluated to a boolean value through a process called configuration. A true

value indicates that the element is present and a false value indicates its absence.

2.1.1 Features and Feature Expressions

Presence conditions need to capture where each variant differs from others in a variational
database in terms of which elements are present in a particular variant. Key entities
that uniquely identify variants of a database can be used to annotate its elements. For
example, in schema evolution, the schema evolves over time and each schema variant
can be uniquely identified by a timestamp. Hence, elements present in a variant can be
annotated with its respective timestamp. In software product lines (SPL), SPL features
create database variants. Hence, features can be used as key identifiers for annotation.
In variational databases, we borrow the term features from SPL to refer to these key
identifiers. For simplicity, features are assumed to be boolean valued variables but can
be extended to multi-valued variables. When variants interact with each other, presence

conditions of their elements depend on multiple features. These interactions can easily be

Feature Expression Syntax:

feF Feature Name
beB 1= true | false Boolean Value
ecE == b | f| ~e | eNe | eVe Feature Expression

Figure 2.1: Feature Expression Syntax.

captured with propositional formulas of features, called feature expressions (Figure 2.1).
For example, in schema evolution when an element is present in several schema variants,
it can be annotated with disjuncted features representing those variants. In an SPL, if a
database element can only be present when two specific SPL features are enabled, then
the element can be annotated with the conjunction of two features that represents the two
SPL features. In conclusion, features are boolean variables that capture where database
variants differ from each other and feature expressions are propositional formulas of
features that describe presence conditions of elements in a variational database through
annotation.
Feature expressions are formally encoded in Coq as follows.

(** Feature Name *)

Definition fname := string.

(** Feature Exression Syntax. *)
Inductive fexp : Type :=

1itB : bool — fexp

1litF : fname — fexp

|

|

| comp : fexp — fexp (* negation *)

| meet : fexp — fexp — fexp (* conjunction *)
|

join : fexp — fexp — fexp. (* disjunction *)

Notation "~(F) f" := (comp f) (at level 35, right associativity).
Infix "A (F)" := meet (at level 41, right associativity).
Infix "V (F)" := join (at level 45, right associativity).

2.1.2 Configuration/Variation Elimination

The set of all features of a variational database, denoted by F, represents its configuration

space. The configuration space of a variational database is assumed to be closed for

Feature Expression Configuration:

E[]:E—-C—B

E[b]. = b
E[f]]c =cC f
t if £ = fal
E[N 6]]0 _ rue, 1 [[e]].c alse
false, otherwise
t if E =t dE =t
Ele; A es]. = rue, i [[el'ﬂc rue and Efes]. = true
false, otherwise
Ele; V es]. = rue, if Efe;]. = true or Efes]. = true

false, otherwise

Figure 2.2: Feature Expression Configuration.

simplicity. A configuration ¢ maps each feature in F to a boolean value. When applied
to a variational database, a configuration produces a particular database variant after
all variations have been eliminated.

The feature expression configuration function evaluates a feature expression with
respect to a particular configuration of its pertaining features as defined in Figure 2.2
and encoded as the Coq function semE shown below.

(** Feature Configuration. *)

Definition config := fname — bool.

(** Feature Expression Configuration. *)
Fixpoint semE (e : fexp) (c : config) : bool :=
match e with

| 1itB b = b

| 1itF £ = c f

| ~(F) e = negb (semE e c)

| e1 A(F) e2 = (senE el c) && (semE e2 c)
| e1 V (F) e2 = (senE el c) || (semE e2 c)
end.

Notation "E[[e 1] c" := (semE e c) (at level 50, left associativity).

Feature Expression Properties:

e1 =c ez iff Ve e C: Efei]. = Efez].
sat(e) iff Jc € C: Efe]. = true
unsat(e) iff Ve e C:Efe]. = false
e1 — e iff Ve € C: Efei1]. = true — Efes]. = true

Figure 2.3: Feature Expression Properties.

Properties of feature expressions are shown in Figure 2.3. Two feature expressions
e1 and ey are equivalent, denoted by e; =, es, if, for all configurations, they result in
the same boolean value. A feature expression e is satisfiable, denoted by sat(e), if there
exists a configuration for which it evaluates to true, otherwise it is unsatisfiable, denoted
by unsat(e). A feature expression e; implies another feature expression ez, denoted
by e1 — eq, if, for any configuration, first expression evaluates to true then, with the
same configuration, the later evaluates true as well. Feature expression equivalence,
satisfiability, unsatisfiability, and implication are encoded in Coq as equivE, sat, unsat
and implies, respectively.

(** Feature Expression Properties *)

(** Feature Expression Equivalence *)
Definition equivE : relation fexp :=
fun e e’ = forall c, (semE e c) = (semE e’ c).

Infix "=e=" := equivE (at level 70) : type_scope.

(* Feature Expression Satisfiability *)
Definition sat (e:fexp): Prop :=

exists c, semE e c = true.

Definition unsat (e:fexp): Prop :=

forall c, semE e c¢c = false.

(* Feature Expression Implication *)

Definition implies (el e2:fexp) (c:config) : Prop :=

(E[[e1 11 ¢) = true — (E[[e2 1] c) = true.

Notation "el -e— e2 | c¢" := (implies el e2 c) (at level 91, left

associativity).

The set of all possible configurations, denoted by C, represents a set of identifiers for

10

all possible variants of a variational database. Because of interactions among variants,
some configurations may be invalid. This can be captured again by a feature expression
known as feature model. The entire variational database is annotated with the feature
model to restrict its configuration space. For example, let’s assume, in an SPL S, an
SPL product can either be educational, denoted by feature, edu or commercial, denoted
by, com. That is, SPL features edu and com cannot be true at the same time. Since
SPL features create database variants in SPLs, the configuration space of the variational
database for the SPL S can be restricted with the feature model (eduA ~ com) V (~
edu A com) which enforces that exactly one of these features must be true and the other

must be false.

2.2 Relational Databases

A relational database stores information in a structured way enforced by its schema. A
database schema S is a finite set of relation schemas {R1, ..., Ry}. A relation schema R
is a finite set of attributes r{ai,,ar} where r denotes the name of the relation.

The content of a database is organized under the structure provided by its relation
schemas. The respective content for each relation schema is called the relation content.
A relation content RC' of a relation schema R is a finite set of tuples {U,...,Upn}.
Each tuple U, Vg1 m) contains values (vy,,vy) corresponding to respective R’s set of
attributes {ay,....,ar}. The pair of a relation content RC and its relation schema R is
called a table T'= (R, RC). An instance I of a database with schema S is a set of tables
{T1, ..., T,,}.

2.3 Variational Databases

Variational databases extend relational databases to include support for variation. The
basic structures underlying elements of a relational database are sets. Hence, Sec-
tion 2.3.1 extends traditional sets and set operations to variational sets [16]; this section
also includes formal proofs of variational set properties (Section 2.3.1.1) and the cor-
rectness of variational set operations with respect to traditional set operations (Section
2.3.1.3). Finally, variational schemas and variational tables, that is the structure and

contents of variational databases, are defined in Sections 2.3.2 and 2.3.3, respectively.

11

2.3.1 Variational Set

Variational sets are sets of elements with conditional presence, that is, sets of variational
elements (Section 2.1). Each set element is annotated with a feature expression that en-
codes its presence condition. For example, X,,; = {xlflAfQ,ngWfS, x3f3} is a variational
set where elements x1, x2, and z3’s presence conditions are denoted by the feature ex-
pressions (fi A fa), (f2V f3), and f3 respectively. A variational set itself can be annotated
with a feature expression, for example, Xv{ = {a "2 gy foVFs 2333 Annotating a
variational set with a feature expression f further restricts the condition under which
its variational elements are present. This is equivalent to conjuncting each constituting
variational element’s annotation with f, for example, {:Ulf N2 o P2V I3 gpaf 3}f is equiva-
lent to {z 1NN o P2VIAS g3 sAFY - Variational sets are alternatively called as v-sets
and they are used interchangeably in this thesis.

Plain and variational sets are formally encoded in Coq as follows. Plain elements,
elem are encoded as strings. Variational elements, velems are annotated elems where
annotations are feature expressions, fexp.

(* Plain Element *)

Definition elem : Type := string.

(* Variational Element *)
Inductive velem : Type :=
| ae : elem — fexp — velem.
Plain sets are simply sets of plain elements, elem and variational sets are sets of

variational elements, velem.

(* Plain Element Set *)

Definition elems : Type := set elem.

(* Variational Element Set *)

Definition velems : Type := set velem.

(* Annotated Variational Element *)
Definition avelems : Type := (velems * fexp) Jtype.

Conceptually, a variational set represents multiple plain sets which are called variants
of the variational set. A plain set is generated from a variational set by configuring feature
expressions of its variational elements with respect to a particular configuration and

including elements with true value. This process is called variational set configuration

12

V-Set Configuration:

X[]: Xy =C—=X
{z} UX[X,]e, if E[e]. = true

X[{z}u Xy]e =
A]] X[Xo]e, otherwise

X[{}e = {}

Figure 2.4: Variational Set Configuration.

Annotated V-Set Configuration:

AX[]: AXy - C — X
AX[[Xve]]c _ X[[Xv]]c, if E[[eﬂc = true
i otherwise

Figure 2.5: Annotated Variational Set Configuration.

(Figure 2.4). For example, {f1, f2, f3} is the set of all features in the variational set X, .
Mapping it to {true, false, true} evaluates presence of condition of x; to false, but
presence of conditions of both xo and x3, to true. Hence, the corresponding plain set
is {x2, x3}. Similarly, configuring X,; with feature configuration {true, true, false}
generates another plain set, {x1,x2}.

Variational set and annotated variational set configuration shown in Figure 2.4 and
2.5 are encoded in Coq as below.

(* Variational Set Configuration X[lc *)
Fixpoint configVElems (ves : velems) (c : config) : elems :=
match ves with
| nil = nil
| cons (ae a e) ves = if senE e ¢
then (cons a (configVElems ves c))
else (configVElems ves c)
end.
Notation "X[[ves 1] c" := (configVElems ves c) (at level 50).

(* Annotated Variational Set *)

Definition avelems : Type := (velems * fexp) %type.

(* Annotated Variational Set Configuration AX[Jc *)

13

Definition configaVElems (aves : avelems) (c : config) : elems :=
match aves with
| (ves, e) = if semE e c then configVElems ves c¢ else nil
end.
Notation "AX[[ves]] c" := (configaVElems ves c) (at level 50).
The set of all possible configurations represents the all possible variants of a vari-
ational set. Variational set properties and operations are defined with respect to the

respective properties and operations for plain sets.

2.3.1.1 Variational Set Properties

Variational set needs to preserve plain set property of having distinct elements over
variation elimination, that is, configuring a variational set should generate a plain set.
For example, X5 = {$1fl,x2f2,x2f3} is a variational set as plain element xo is re-
peated with different annotations. Configuring X,5 by mapping feature set { f1, fo, f3}
to {false, true, true} results in {xo, zo} which, however, is not a set. Hence, I define the
following property, No-Dup-Elem to restrict variational set not to have multiple entries

of a plain element with different annotations.

Definition 2.3.1 (No-Dup-Elem). X, is a variational set with property No-Dup-Elem
if Vat e X, (ﬂe/. ¢ £eand 1zt € Xy).

Technically, any variational set with repeated plain elements with different annotation
like X, doesn’t violate set properties in a variational set. However, to ensure correctness
of variational set operations with respect to plain set operations (Section 2.3.1.3), it is
necessary to restrict them with No-Dup-Elem property . Moreover, this property does
not limit expressiveness of variational sets. Any variational set that has repeated plain
elements with different annotation can be modified to an equivalent variational set with
this expected No-Dup-Elem behavior.

To formally encode No-Dup-Elem as an inductive property, I first define another

property In-Elem that states that a plain element is in a variational set.

Definition 2.3.2 (In-Elem). A plain element x is in a variational set X,,, that is, (In-
Elem z X,) if Je. z¢ € X,,.

In-Elem is formally encoded in Coq as a functional property InElem.

14

(* In-Elem Property: Plain Element in V-set *)
Function InElem (a:elem) (l:velems) {struct 1}: Prop :=
match 1 with

(N = False
| ae x e :: xs = x = a V InElem a xs
end.

Then, No-Dup-Elem property is formalized in Coq as NoDupElem using InElem. Note
that, In property in Coq Standard Library is different than InElem and is only able to
recognize if a variational element is in a variational set.

(* No-Dup-Elem Property: No Duplicate Plain Element in V-set *)
Inductive NoDupElem : velems — Prop :=

| NoDupElem_nil : NoDupElem nil

| NoDupElem_cons : forall a e 1, InElem a 1 — NoDupElem 1
— NoDupElem ((ae a e)::1).

To achieve No-Dup-Elem property in a variational set, annotations of all occurrences
of an plain element are disjuncted to form a new feature expression. Then, all occurrences
of that plain element are replaced by a single entry annotated with the new feature
expression. I define the function, nodup-elem, that takes any variational set and returns
an equivalent variational set that has the No-Dup-Elem property. nodup-elem is defined

with three helper functions existsb-elem, get-annot and remove-elem.

Definition 2.3.3 (existsb-elem). For any plain element x and v-set X,,, (existsb-elem x

Xy) is true if plain element a exists in X, with some annotation, and false, otherwise.

Definition 2.3.4 (get-annot). For any plain element = and v-set X,, (get-annot x X,)
finds all occurrences of x in X,, concatenates their annotations with boolean OR (V)

and returns the concatenated annotation.

Definition 2.3.5 (remove-elem). For any plain element x and v-set X,, (remove-elem
x X,) removes all occurrences of plain element x in X,, that is, all variational elements

in v-set that have underlying plain element x.

Definition 2.3.6 (nodup-elem). For any v-set X,, (nodup-elem X,) returns a v-set
equivalent to X, and has No-Dup-Elem property, that is, it concatenates annotations of
each plain element x that exists in X, (Definition 2.3.3), using get-annot in definition
2.8.4 and keeps one occurrence of x with the concatenated annotation removing others

with remove-elem from definition 2.3.5.

15

Above functions existsb-elem, get-annot, remove-elem and nodup-elem are encoded in
Coq as existsbElem, get_annot, removeElem and nodupelem respectively.

(* Check whether Plain element a exists in velems \vElemList *)

Definition existsbElem (a : elem) (A : velems) := existsb (eqbElem a) A.

(* Get concatenated annotaion of a Plain element a from velems A *)
Definition get_annot (a : elem) (A: velems) : fexp :=
fold_right Feature.join (1litB false) (map (sndVelem) (filter (egbElem a) A)).

(* Remove all occurances of a Plain element a from velems A *)
Function removeElem (a : elem) (A: velems) {struct A} : velems :=
match A with

| nil = nil

| ae a’ e’ :: A’ = match (string_beq a a’) with
| true = removeElem a A’

| false = ae a’ e’ :: removeElem a A’

end

end.

(* Concatenation of Duplicate Plain Elements in V-set *)
Function nodupelem (v : velems) {measure List.length v} : velems :=

match v with

| nil = nil
| ae a e :: vs = match existsbElem a vs with
| false = ae a e :: nodupelem vs
| true = let e’ := get_annot a vs in
(ae a (e V (F) e’)) :: nodupelem (removeElem a vs)
end
end.

all:intros; simpl; eauto.
Defined.

Following lemma proves that resultant variational set from nodup-elem has No-Dup-

Elem property.
Lemma 2.3.7. For any v-set, X,, No-Dup-Elem (nodup-elem X,).

Formal proof of the above lemma encoded as NoDupElem nodupelem in Coq is given below.

(* nodupelem ensures NoDupElem *)
Lemma NoDupElem_nodupelem (v:velems) : NoDupElem (nodupelem v).
Proof. functional induction (nodupelem v) using nodupelem_ind.
+ apply NoDupElem_nil.
+ apply NoDupElem_cons. rewrite InElem_nondupelem.

rewrite < existsbElem_InElem.

rewrite el. apply diff_false_true. auto.

16

+ apply NoDupElem_cons. rewrite InElem_nondupelem.
apply notInElem_removeElem. apply IHI.
Qed.

To prove that function nodup-elem generates an equivalent variational set, we first
need to define an equivalence relation on plain lists. Note that, configured variational
sets without No-Dup-Elem property generate plain lists, not plain sets. Two plain lists
are defined to be equivalent if they cover the same set of elements, irrespective of their

order or number of occurrences in the lists.

Definition 2.3.8 (Plain list equivalence). Two plain lists, [; and ly are equivalent,
denoted by l1 =yt lo, iff Ve, x €11 < x € l5.

Then, two variational sets are defined to be equivalent with respect to plain lists if,

for all configurations, their respective configured plain lists are equivalent.

Definition 2.3.9 (V-set equivalence-list). Two variational sets, X,; and X,o are equiv-
alent, denoted by Xy =piist Xvo iff Voo X[Xop1]e =st X[Xuo]e -

Plain list equivalence and V-set equivalence-list are encoded in Coq as equiv_elems_list
and equiv_velems_list.

(* Plain list equivalence *)

Definition equiv_elems_list : relation list elem :=

fun A A’ = forall a, (In a A < In a A’).

Infix "=list=" := equiv_elems_list (at level 70) : type_scope.

(* V-set equivalence-list *)

Definition equiv_velems_list : relation velems :=

fun A A’ = forall c, (X[[Allc) =list= (X[[A’]1]c).

Infix "=vlist=" := equiv_velems_list (at level 70) : type_scope.

Following lemma proves that nodup-elem generates an equivalent variational set.

Lemma 2.3.10 (nodupelem-gen-equiv-velem). For any variational set X,, nodupelem
Xv =vlist Xv-

Above lemma is encoded in Coq as nodupelem gen equiv_velems_list as below and its

corresponding proof is included in Appendix A.1.1.

17

Lemma nodupelem_gen_equiv_velems_list: forall v, v =vlist= (nodupelem v).
Proof. (See Appndix A.1.1). Qed.

From now on, in this thesis, variational sets are assumed to have No-Dup-Elem prop-
erty, variational set operations maintain No-Dup-Elem property and V-set equivalence

is re-defined with respect to the plain set equivalence.

Definition 2.3.11 (Plain set equivalence). Two plain sets, X; and Xy are equivalent,
denoted by X1 =ger Xo, iff Va. x € X1 < x € X».

Definition 2.3.12 (V-set equivalence). Two variational sets, X, and X,9 are equiva-
lent, denoted by X1 =ypset Xvo iff Ve X[Xopi]e Zset X[Xpa]e-

Definition 2.3.13 (Annotated V-set equivalence). Two variational sets, X,{' and X,5?
are equivalent, denoted by X,7" Zqvset Xovg® iff Ve, AX[X, e =ser AX[X5]

Plain set equivalence, V-set equivalence and Annotated V-set equivalence are encoded
in Coq as equiv_elems, equiv_velems and equiv_avelems respectively.

(* Plain set equivalence *)
Definition equiv_elems : relation elems:=
fun A A = forall a, (Ina A <> In a A’) A

(count_occ string_eq_dec A a = count_occ string_eq_dec A’ a).
Infix "=set=" := equiv_elems (at level 70) : type_scope.

(* V-set equivalence *)
Definition equiv_velems : relation velems :=
fun A A’ = forall c, X[[A]l]l c =set= X[[A’]]c.

Infix "=vset=" := equiv_velems (at level 70) : type_scope.

(* Annotated V-set equivalence *)
Definition equiv_avelems : relation vqtype :=
fun X X’ = forall c, AX[[X]]c =set= AX[[X’]]c.

Infix "=avset=" := equiv_avelems (at level 70) : type_scope.

Plain set, v-set and annotated v-set equivalences are equivalence relations with reflexivity,
symmetry and transitivity. Formal proofs of these properties are included in Appendix
A.1.2, A.1.3 and A.1.4. In the rest of the thesis, above equivalence relations are going

to be used for plain set, v-set and annotated v-set equivalence.

18

Variational set subset, (V-set subset) extends plain set subset property to variational

sets.

Definition 2.3.14 (Plain set subset). A plain set, X; is subset of another set Xo iff
elements of X1 are also elements of Xs, that is, V. x € X1 — x € Xo.

Definition 2.3.15 (V-set subset). The v-set X, is subset of the v-set X5, denoted
by Xy1 C Xyo, iff V2 € X1, dea. e1 — ex and %2 € Xyq, i.e., all plain ele-
ments in X, also exist in X,o with more specific presence condition s.t. in a shared
configuration, all elements in configured X,1 are present in configured X,o. For ez-
ample, {2trve 31} C {atrue 31V gtrued - however, {2true 3/1} ¢ {2true 3fiM2Y and
{2true’3f1’4true} g {Qtrue’3f1vf2}'

Plain subset and v-set subset is enocoded in Coq as subset and subset_velems_exp as
follows.

(* Plain Set Subset *)
Definition subset (A A’: elems):= forall x, (In x A — In x A’) A

(count_occ string_eq_dec A x <= count_occ string_eq_dec A’ x) .

(* Variational Set Subset *)
Definition subset_velems_exp (A A’: velems) :Prop := forall x e c,
In (ae x) A A ((EL[ellc) = true) —
exists e’, In (ae x e’) A> A (E[[e’]]lc) = true.

Correctness of v-set subset property that it correctly extends the plain set subset
property to variational sets can be proved by following theorem which states that if a v-
set X, is subset of X5, then after configuring X,; and X, with the same configuration

¢, generated plain sets have subset relationship and it is true for all configurations.

Theorem 2.3.16. For any two v-sets, X, and X,o, Xy; is subset of X,y <=
Ve. X[Xy1]e is subset of X[X,o]c -

Above theorem is encoded in Coq as subset_velems_correctness as below and its formal
proof is included in Appendix A.1.5.

Theorem subset_velems_correctness A A’ (HndpA: NoDupElem A) (HndpA’: NoDupElem A’):
subset_velems_exp A A’ <> (forall c, subset (X[[Allc) (X[[A’1]c)).

Proof. (See Appndix A.1.5). Qed.
This correctness theorem basically provides semantic definition of v-set subset prop-

erty which can easily be extended to annotated v-set subset property.

19

Definition 2.3.17 (Annotated v-set subset). For any two annotated v-sets, X,7* and
X2, Xo{" is subset of X,5? iff Ve. AX[X,{']. is subset of AX[X,5].

Annotated v-set subset is encoded in Coq as subset_avelems as shown below.

Definition subset_avelems (A A’: avelems) : Prop := forall c,
subset (AX[[Allc) (AXI[[A’1]c).

2.3.1.2 Variational Set Operations

Plain set operations are extended to variational set operations that maintain equivalency
to plain set operations over variation elimination. In other words, configuring result of
a variational set operation is equivalent to configuring variational sets first and then

applying the respective plain set operation on them. This property is defined as follows.

Definition 2.3.18 (V-set operation variation preservation). A binary V-set operation
(*) is variation preserving if for any two V-sets, Xy1 and X0, Ve. X[Xy1 % Xyole =set
X[[le]]c * X[[—X’UQ]]C'

Variational set union and intersection, V-set union and V-set intersection extend
plain set union and set intersection for variational sets. The set union of two plain sets,
X7 and X9, X7 U Xy is a plain set itself that contains all the elements in X7 and Xs.
Elements that are in both sets are included once. V-set union is defined as follows which
maintains the No-Dup-Elem property as discussed in Section 2.3.1.1 to ensure variation
preservation property defined in Definition 2.3.18. V-set union overloads the U notation

used for plain set union.

Definition 2.3.19 (V-set union). The union of two v-sets is the union of their elements
with the disjunction of presence conditions if an element exists in both v-sets: Xy,1UXy9 =
{2 | 2% € Xy, Pea.w® € XpotU{a®? | 22 € Xyo, Pe1.2 € Xy JU{zeVe2 | 21 €
Xop1,2%% € Xyo}. For example, {26131} U {262 464} = {261Vez 31 gea}

Plain set union is formally encoded in Coq as elems_union with set_union from Coq
Standard Library which maintains the set property. V-set union is enocded as velems_union
which is the composition of two operations nodupelem and set_union. nodupelem ensures

that No-Dup-Elem property is maintained in the resultant variational set.

20

(* Plain Set Union *)

Definition elems_union (A A’: elems) : elems := set_union string_eq_dec A A’.

(x Variational Set Union *)
Definition velems_union (A A’: velems) : velems := nodupelem (set_union

velem_eq_dec A A’).

Both plain and v-set union have the identity property described by the following lemmas.
Lemma 2.3.20 (Plain set union nil-r). For any plain set X, {} UX = X.

Lemma 2.3.21 (Plain set union nil-1). For any plain set X, X U{} = X.

Lemma 2.3.22 (V-set union nil-r). For any variational set X, {} U X, = X,.
Lemma 2.3.23 (V-set union nil-1). For any variational set X,, X, U{} =40 Xo.

Above lemmas, that is, Lemma 2.3.20, 2.3.21 2.3.22 and 2.3.23 are encoded in Coq
as elems_unionnil.r, elems_unionnil 1, velems_union nil_r, velems_union_nil_1 respec-
tively and their respective proofs are included in Appendix A.2.1 and A.2.2.

(* Plain set union nil-r *)
Lemma elems_union_nil_r: forall A, atts_union A [] =set= A.
Proof. (See Appndix A.2.1). Qed.

(* Plain set union nil-1 %)
Lemma elems_union_nil_1: forall A (H: NoDup A), elems_union [] A =set= A.

Proof. (See Appndix A.2.1). Qed.

(* V-set union nil-r *)

]
=

Lemma velems_union_nil_r : forall A (H: NoDupElem A), velems_union A []
Proof. (See Appndix A.2.2). Qed.

(* V-set union nil-1 x)
Lemma velems_union_nil_1 : forall A (H: NoDupElem A), velems_union [] A =vset= A.
Proof. (See Appndix A.2.2). Qed.

Similarly, the set intersection of two plain sets is a plain set that only includes ele-
ments present in both sets. V-set intersection extends the plain set intersection definition
to variational set maintaining both No-Dup-Elem and variation preservation property.

V-set intersection overloads the N notation used for plain set intersection.

Definition 2.3.24 (V-set intersection). The intersection of two v-sets is a v-set of their

shared elements annotated with the conjunction of their presence conditions, that is,

21

X1 N Xypg = {xe2 | 2% € X,1,22 € Xyo}. For example, {1179 27¢1 321 N
{162’262’462} ::{162’2‘€1A62}‘

Formal encoding of plain set intersection elems_inter uses set_intersection from Coq
Standard Library which takes two plain sets and returns the intersected set. Variational
set intersection is encoded following the Definition 2.3.24 as velems_inter that is shown
below.

(* Plain Set Intersection *)

Definition elems_inter (A A’: elems) : elems := set_inter string_eq_dec A A’.

(* Variational Set Intersection *)

Function velems_inter (A A’ : velems) {measure List.length A} : velems

match A with
| nil = nil
| ae a e :: As = match existsbelem a A’ with
| false = velems_inter As A’
| true = let e’ := get_annot a A’ in
(ae a (e A (F) e’)) :: velems_inter As A’

end
end.
all:intros; simpl; eauto.
Defined.

Plain set intersection and v-set intersection have the identity property as shown below.
Lemma 2.3.25 (Plain set intersection nil-r). For any plain set X, {} N X = {}.
Lemma 2.3.26 (Plain set intersection nil-1). For any plain set X, X N{} = {}.
Lemma 2.3.27 (V-set intersection nil-r). For any variational set X,, {} N X, = {}.
Lemma 2.3.28 (V-set intersection nil-1). For any variational set X,, X, N {} = {}.

Lemma 2.3.25, 2.3.26 2.3.27 and 2.3.28 are encoded in Coq as elems_inter nil r, elems_inter nil 1,
velems_inter nil r, velems_inter nil 1 respectively and their respective proofs are in-

cluded in Appendix A.2.4 and A.2.5.

(* Plain set intersection nil-r *)
Lemma elems_inter_nil_r: forall A, elems_inter A [] = [].
Proof. (See Appndix A.2.4). Qed.

(* Plain set intersection nil-1 *)

22

Lemma elems_inter_nil_1: forall A, elems_inter [] A = [].
Proof. (See Appndix A.2.4). Qed.

(* V-set intersection nil-r *)

Lemma velems_inter_nil_r : forall A, velems_inter A [] = [].
Proof. (See Appndix A.2.5). Qed.

(*x V-set intersection nil-1 *)

Lemma velems_inter_nil_l : forall A, velems_inter [] A = [].

Proof. (See Appndix A.2.5). Qed.

Finally, cross product of v-sets is defined as below. V-set cross product is not formal-
ized in Coq in this thesis. It is not required for any of the VDBMS correctness properties
specified and proved in this thesis. However, to ensure correctness of v-set cross product
definition, that is, that it correctly extends plain set cross product, future extension of
this work should formalize and prove the variation preservation property for v-set cross

product.

Definition 2.3.29 (V-set cross product). The cross product of two v-sets is a pair of
every two elements of them annotated with the conjunction of their presence conditions.
Xoy1 X Xpg = {(21,22)"? | 2" € X1,252 € Xo}

V-set union and intersection can be extended to annotated v-set with semantic equiv-
alence relationship which requires following two operations to be defined on annotated
v-sets.

Add-annot operation allows adding more constraint on an already annotated vari-
ational v-set, in other words, annotates an already annotated set, X,¢, with another

feature expression, €', which is just a syntactic sugar for X, (ene),

Definition 2.3.30 (Add-Annot). For any annotated v-set Q, = X,° and a feature
expression €', (Add-Annot Q, €'), denoted by Q. ¢, is defined to be X, (¢

Add-annot is encoded in Coq as addannot as shown below.

Definition addannot (Q:vqtype) (e:fexp): vqtype := (fst Q, (snd Q) A (F) e).
Notation " Q ~~ e " := (addannot Q e) (at level 70).

Push-annot operation annotates each variational element in a variational set, X,

with a given feature expression, e.

23

Definition 2.3.31 (Push-annot). For a variational set X, = {xy1°, ...,z } and a
feature expression e, (push-annot X, e), denoted by (X, < e), is defined as the v-set

{20197 sy Ty SR}

Push-annot is encoded in Coq as push_annot as shown below.

(** Push annotation into a variational element set *)
Fixpoint push_annot (A: velems) (m: fexp) : (velems):=
match A with

| nil = nil
| ae x e :: xs = (ae x (e A(F) m)) :: push_annot xs m
end.

Notation " Q < e " := (push_annot Q e) (at level 70).

An annotated v-set can be converted to an equivalent non-annotated v-set using the
push-annot operation which is later used to extend v-set operations to annotated v-set
operations. Following lemma proves that above statement is correct with respect to the

v-set equivalence (Definition 2.3.12). Note that, equality itself is an equivalence relation.

Lemma 2.3.32. Any annotated variational set, X,° is equivalent to the v-set (push-
annot X, e) with respect to their respective configured plain sets i.e. Ve, AX[X,°]. =
X[Xy < €]e.

Lemma 2.3.32 is encoded in Coq as push_annot_correctness which is shown below
along with its formal proof.

Lemma push_annot_correctness A e c:
AXLL (A,)11 c = X[[A <el] c.

Proof. induction A. simpl.
destruct (E[[el] c); reflexivity.
unfold push_annot; fold push_annot.
destruct a. simpl configVQtype.
simpl (AX[[_1Jc) in THA.
simpl (X[[_1le¢). simpl (AX[[_1lc).
destruct (E[[el] c); destruct (E[[£1] ¢); simpl;
try(eauto) .
rewrite IHA. reflexivity.

Qed.

Now, v-set union is extended to annotated v-set union using push-annot operation.

Definition 2.3.33 (Annotated v-set union). The union of two annotated v-sets X,
and X,0%?, denoted by X1 U Xy9®, is defined as (X1 < e1) U (Xyo < e2).

24

Annotated v-set intersection, however, is defined solely in terms of variational set inter-

section without any helper function.

Definition 2.3.34 (Annotated v-set intersection). The intersection of two annotated
v-sets, X1 and X,0%?, denoted by X,1°' N X0, is defined as (Xy1 N Xya, €2 Aeg)

where the later N indicates the v-set intersection.

Note that, annotated v-set union and intersection again overload the U and N notations.
Annotated v-set union and intersection operations are encoded as avelems_union_vq and
avelems_inter_vq respectively.

(* Annotated Variational Set Union *)
Definition avelems_union_vq (Q Q’: avelems) : avelems :=
let (A, e) :=Q in
let (A’, e’) :=Q’ in
(velems_union (A < e) (A’? < e’), e V (F) e’).

(* Annotated Variational Set Intersection *)
Definition avelems_inter_vq (Q Q’: avelems) : avelems :=
let (A, e) :=Q in
let (A’, e’) :=Q’ in
(velems_inter A A, e A (F) e’).
Both operations maintain the No-Dup-Elem and the variation preservation property.

Corresponding formal proofs are included in the Appendix A.2.7 and A.2.8.

2.3.1.3 Correctness of Variational Set Operations

V-set operations need to be variation preserving (Definition 2.3.18) to ensure that they
correctly extend corresponding plain set operations for variational sets. In this section, I
provide formal proofs of variation preservation for v-set union and intersection operations

defined in Section 2.3.1.2. Following theorem proves v-set union is variation preserving.

Theorem 2.3.35. For any two v-sets, X, and X,/, Ve. X[X, U X]e =set X[Xo]e U
X[X]e-

Formal encoding of the above theorem is given below and corresponding mathematical
and formal proofs are included in the Appendix A.2.3.

Theorem velems_union_is_variation_preserving : forall A A’ c¢ (HA: NoDupElem A)
(HA’: NoDupElem A’),

25

X[[velems_union A A’]]c =set= elems_union (X[[Al] c) (X[[A’]] ¢).
Proof. (See Appndix A.2.3). Qed.
Similarly, variation preservation property of v-set intersection is guaranteed by the

theorem below.

Theorem 2.3.36. For any two v-sets, X, and X,/, Ve. X[X, N X]ec Zser X[Xp]e N
X[X]e-

Theorem 2.3.36 is encoded as velems_intersection is_variation_preserving and its for-
mal proof is included in the Appendix A.2.6.

Theorem velems_intersection_is_variation_preserving : forall A A’ c (HA: NoDupElem
A) (HA’ : NoDupElem A’),
X[[velems_inter A A’]] c = elems_inter (X[[A]] c) (X[[A°1] ¢©).
Proof. (See Appndix A.2.6). Qed.
Now that, we have formalized definitions and properties of v-set and v-set operations,

we are ready to formalize the variational schema and content of the variational database.

2.3.2 Variational Schema

Variational schemas extend plain relational database schemas to represent multiple plain
database schemas at once. A variational schema (v-schema), Sy, is an annotated set of
variational relation schemas {Rq,, R,}™. A variational relation schema ((v-relation
schema)) is an annotated set of variational attributes (v-attributes) preceded by a re-
lation name, r(A,)¢ where A, = {ay1,.....,apx} . Variational attributes are variational
elements defined in Section 2.3.1. Annotation of v-schema can be used to restrict v-
shcema configuration space to valid or expected configurations only. A v-schema with
proper annotation defines all valid schema variants of a variational database where the
annotation serves as the feature model of the respective VDB by capturing feature rela-
tionships of underlying application.

Formal encoding of v-schema is done in terms of variational set encoding (Section
2.3.1). Plain and variational elements defined and encoded in Section 2.3.1 are used as
plain and variational attributes. Plain relation schema relS is encoded as plain sets of
plain attributes and variational relation schema vrel$ is encoded as annotated v-sets of

variational attributes. Both are accompanied with a relation name r, encoded as string.

26

V-Relation Schema Configuration:

R[.J]:Ry = C—R
r(X[Au]e), if E[e]. = true
r({}), otherwise

R[{r(A0) e =

Figure 2.6: Variational Relation Schema(V-Relation Schema) Configuration.

V-Schema Configuration:

S[.]:Sy = C—S

SHRu1,- -+, Run} "]
{R[Rv1]cs-- - R[Ryp]c}, if E[m]. = true
{}, otherwise

Figure 2.7: Variational Schema(V-Schema) Configuration.

(*relation namex)

Definition r : Type := string.

(* Plain Relation Schema *)

Definition relS : Type := (r * elems) % type

(* Variational Relation Schema *)
Definition vrelS : Type := (r * avelems) J%type.
Plain schema schema are then plain sets of relation schemas and variational schemas
vschema are annotated v-sets of v-relation schemas.
(* Plain Schema *)

Definition schema : Type := set relS.

(* Variational Schema *)
Definition vschema : Type := ((set vrelS) * fexp) %type.

Configurations of v-relation schemas (Figure 2.6) and v-schemas (Figure 2.7) extend
from v-set configuration, (Figure 2.4) and generate plain relation schemas and plain
schemas respectively. V-relation schema configuration and V-schema configuration are
encoded in Coq as configVRelS and configVSchema respectively.

(* Variational Relation Schema Configuration R[lc *)

27

Definition configVRelS (vr : vrelS) (c : config) : relS :=

let r := fst vr in

let VA := fst(snd vr) in
let e := snd (snd vr) in
if E[[ellc

then (r, (A[LVAllc))
else (r, [1).
Notation "R[[vr 1] c¢" := (configVRelS vr c) (at level 50).

(* Variational Schema Configuration S[Jc *)
Definition configVSchema (vs : vschema) (c : config) : schema :=
let VR := fst vs in

let m := snd vs in
if E[[mllc
then map (fun vr = (R[[vr]llc)) VR
else [].
Notation "S[[vs]] c¢" := (configVSchema vs c) (at level 50).

2.3.3 Variational Database Content

The content of a variational database, that is, the variational database instance is orga-
nized under the structure of its v-relation schemas. The pair of a v-relation schema and
its respective variational relation content (v-relation content) is called a variational table
(v-table). A v-relation content RC, of a v-relation schema R, is a finite set of varia-
tional tuples or v-tuples {Uy,, Uyp, }. Each v-tuple Uy, Vi1, 18 an annotated tuple
of variational values (vy1,, Uy) that corresponds to respective v-relation schema R,’s
set of v-attributes. A variational value is a plain value annotated with some presence
condition. Finally, the variational database instance (v-instance) is a set of v-tables
corresponding to the respective v-schema.

Plain value val and variational value vval are encoded in Coq as plain element elem
and variational element velem. Plain tuple tuple and variational tuple vtuple are encoded
as list of val and list of vval. plain and variational relation content are encoded as
rcontent and vrcontent which are set of tuple and set of vtuple respectively. Finally,
plain and variational table and instance are encodes as table, vtable, instance and
vinstance as shown below.

(* Plain Value *)

Definition val : Type := elem.

28

Variational List Configuration:

V[]:Vy=>C—=V
(v:V[Vy]e), if E[e]. = true

V(¢ : V)], =
v) VIVile, otherwise

Figure 2.8: Variational List Configuration.

(* Variational Value *)

Definition vval : Type := velem.

(* Plain Tuple *)
Definition tuple : Type := list val.

(* Variational Tuple *)

Definition vtuple : Type := (list vval * fexp) % type..

(* Plain Relation Content *)

Definition rcontent : Type := set tuple.

(* Variational Relation Content *)

Definition vrcontent : Type := set vtuple.

(* Plain Relation Content *)

Definition table : Type := (relS * rcontent) Jtype.

(* Variational Relation Content *)

Definition vtable : Type := (vrelS * vrcontent) %type.

(* Plain Instance *)

Definition instance : Type := set table.

(* Variational Relation Content *)

Definition vinstance : Type := set vtable.

Variational list configuration is shown in Figure 2.8 and is encoded in Coq as configVElemList
as below.

(* Variational List Configuration V[Jc *)

Fixpoint configVElemList (vl : list velem) (c : config) : list elem :=
match vl with

| nil = nil

| cons (ae a e) val = if semE e c

29

V-Tuple Configuration:
U[]:Uy-C—-1U

[U[[V e]] _ V[[Vv]]c, if E[[e]]c = true
vhe 0, otherwise

V-Relation Content Configuration:

RC[.] : RCy - C — RC
RC[{Uv1,--- s Uvm e = {UUp1le, - - -, UlUum] e}

V-Table Configuration:

T[.]: Ty = C—T
T[(Ry, RCY)]e = (R[Ry]e, RC[RCy])

VDB Instance Configuration:

I):Zv - C—-1Z
H[HTvb e 7Tvn}]]c = {T[[Tvl]]a e ’T[[Tvn]]c}

Figure 2.9: Variational Tuple(V-Tuple), Variational Relation Content(V-Relation Con-
tent), Variational Table(V-Table), and Variational Database(VDB) Instance Configura-
tions.

then (cons a (configVElemList val c))
else (configVElemList val c)
end.
Notation "V[[vl J] c¢" := (configVElemList vl c) (at level 50).

Configurations of v-tuples, v-relation contents, v-tables, and VDB instances (Figure 2.9)
extend from variational list and variational set configuration. They are encoded in Coq
as configVTuple, configVRContent, configVTable, and configVDBInsatnce, respectively,
listed below.

(* V-Tuple Configuration U[lc *)
Definition configVTuple (vtup : vtuple) (c : config) : tuple :=
let VT := fst vtup in

let e := snd vtup in

if E[[ellc
then (V[[VTIIlc)
else [I.
Notation "U[L[vu 1] c¢" := (configVTuple vu c) (at level 50).

(* V-Relation Content Configuration T[Jc *)

Definition configVRContent (vrc : vrcontent) (c : config) : rcontent :=

map (fun v = (U[[vllc)) vrc.
Notation "T[[vrc 1] c" := (configVRContent vrc c) (at level 50).

(* (x V-Table Configuration T[]c *)
Definition configVTable (vt : vtable) (c : config) : table :=

let vrs := fst vt in

let vrc := snd vt in
(RL[vrs 1lc, RCLL vrc 1lc).
Notation "T[[vt 1] c¢" := (configVTable vt c) (at level 50). *)

(* VDB Insatnce Configuration I[Jc *)

Definition configVDBInsatnce (vins : vinstance) (c : config)
instance :=

map (fun vt = (RI[[(fst vt)]1lc), (TL[(snd vt) 1lc))) vims.
Notation "I[[vt 1] c¢" := (configVDBInsatnce vt c) (at level 50).

31

Chapter 3: Formal Encoding of Variational Queries

The query language for variational database supports for variation as well. A variational
query, (v-query) expresses variational intent over a subset of relational database variants
represented by the variational database, that is, it can express same intent over several
variants or different intents over different variants. In other words, a variational query
represents multiple plain queries. To accommodate for variation, traditional relation
algebra (RA) is extended with choices [35, 15] and variational sets (Section 2.3.1) to
define variational relational algebra (VRA) (Section 3.1). VRA is more expressive than
RA but it comes with the cost of queries written in VRA, that is, v-queries being more
complex. Consequently, checking validity of v-queries is not trivial. Hence, VRA is
accompanied with a static type system (Section 3.2) that ensures that v-queries conform
to the underlying variational schema and to the variation encoded in the content of the
variational database. Formal correctness of VRA type system (Section 3.3) guarantees

typing of v-queries itself is correct.

3.1 Variational Relational Algebra(VRA)

VRA allows for variation in queries by incorporating choices and variational sets in
traditional RA. Choices are structures that introduce variation by providing multiple
alternatives with a selector. Variation is eliminated by evaluating the selector under
some configuration and selecting the respective alternative. Feature expressions are used
as selectors in the current context. As feature expressions are boolean expressions, using
them as selectors limits number of alternatives to two. The first alternative corresponds
to the true value of selector feature expression and the second one, to false value.
For example, e(x,y) is a choice with two alternatives z and y with the selector feature
expression, e. For a given configuration c, if e evaluates to true, that is, Efe]. = true,
e(zx,y) is replaced by x, otherwise, it is replaced by y. The result of a query written in
VRA is a v-table, that is, a pair of v-relation schema and respective v-relation content.

The type of a valid v-query generated by VRA type system, discussed in Section 3.2,

32

V-Condition Syntax:

0, €Oy, = b | aek | aea | ~0, | 0,V0,
| 0, A0, | €(0y,0,)

VRA Syntax:

GWw€EQy = 71 Variational Relation
| oo, Variational Selection
| Tacqw Variational Projection
| e{qu,qv) Choice of Queries
| quxq Variational Cartesian Product
| @qoq Variational Set Operation
| ¢ Empty Relation

Figure 3.1: Variational Relational Algebra(VRA) Definition. e and o denote comparison
(<,<,=,#,>,>) and v-set operations (N, U), respectively. b represents boolean values,
a denotes plain attributes and k denotes constants.

is a v-relation schema. Running a v-query on a variational database generates a set of
v-tuples, that is, the v-relation content that corresponds to its type. The result is formed
by combining them into a v-table.

VRA extends traditional operations in RA to support variation, and includes an
additional operation, called choice as well as an empty relation as shown in VRA syn-
tax in Figure 3.1. The variational selection (v-select) operation extends plain selection
operation with variational conditions (Figure 3.1). Variational conditions (v-condition)
are plain conditions extended with choice structure. In v-condition syntax, e denotes
comparison (<, <,=,#,>, >) and b, a, k represents boolean values, plain attributes and

constants, respectively. For example, the query o r selects v-tuples from r

e{a1=az,a1=a3)
that meet the condition, a; = as and annotates them with e, and also, selects v-tuples
that satisfies a; = a3 and annotates them with (~ e). Note that, v-tuples are annotated
variational set. Annotating an already annotated set with a feature expression is done
by the add-annot operation defined in Definition 2.3.30. The variational projection op-
eration takes an annotated v-set of attributes as its parameter and projects attributes
present in the parameter with appropriate annotation. For example,the query mgseiye2 7

projects a from relation r and annotate the projected v-tuples with e; A es. The choice

33

operation, e(qy1,qyo) combines two v-queries ¢,; and ¢,, with a feature expression e.
Resulted v-tuples from ¢,; are annotated with e and those from g5, with (~ €). In
practice, sometimes it is useful to have a choice of v-queries where one alternative does
nothing. To support this, VRA is augmented with an empty relation which generates
an empty v-query. The rest VRA operations are variational set operations that extend
respective plain set operations in RA as defined and discussed in Section 2.3.1.2. In VRA
syntax, o denotes v-set union (M) and intersection (U) operations. The resulted set of
v-tuple from running any v-query on a variational database is paired with the v-query’s
type to form the resultant v-table. Note that, presence conditions of elements in the
result of a v-query is at least as specific as their respective presence conditions in the
underlying variational database.

Formal encoding of both plain and v-query is given below. Plain and variational
condition are encoded in Coq as cond and vcond. op describes the comparison operations
and bool, elem, nat denotes the boolean values, plain attributes and constants, respec-
tively. Plain and variational query are encoded as query and vquery. setop denotes the
v-set union and intersection operations.

Inductive op : Type :=

| eq | GTE | LTE | GT | LT | neq.

(* Plain Condition *)

Inductive cond : Type :=

| 1itCB : bool — cond

| elemOpV : op — elem — nat — cond
| elemOpA : op — elem — elem — cond
| negC : cond — cond
|
|

conjC : cond — cond — cond
disjC : cond — cond — cond.

(* Varitational condition *)

Inductive vcond : Type :=

| 1itCB_v : bool — vcond

| elemOpV_v : op — elem — nat — vcond
| elemOpA_v : op — elem — elem — vcond
| negC_v : vcond — vcond
|
|
|

conjC_v : vcond — vcond — vcond
disjC_v : vcond — vcond — vcond
chcC : fexp - vcond — vcond — vcond.

Inductive setop : Type := union | inter.

34

(* Plain Query*)

Inductive query : Type :=

| rel : relS — query

| proj : elems — query — query

| sel : cond — query — query

| prod : query — query — query

| setU : setop — query — query — query
|

empty : query.

(* Variaitonal Query *)

Inductive vquery : Type :=

| rel_v : vrelS — vquery

| proj_v : avelems — vquery — vquery

| sel_v : vcond —> vquery — vquery

| cheQ : fexp —> vquery — vquery — vquery
| prod_v : vquery — vquery — vquery

| setU_v : setop — vquery — vquery — vquery
|

empty_v : vquery.

Variational condition configuration (C[.].) is shown in Figure 3.2. V-query con-
figuration (Q[.].), also in Figure 3.2, is performed with the help of feature expression
configuration (E[.].), annotated v-set configuration (AX[.].), v-relation schema config-
uration (R[.].), and v-condition configuration (C[.].), which are defined in Figures 2.2,
2.5, 2.6, and 3.2, respectively. Variational condition and variational query configura-
tions are encoded in Coq as configVQuery and configVCond, denoted by (Q[[.1]c) and
(CL[.1]c), respectively.

(*Variational Query Configuration Q[Jc *)
Fixpoint configVQuery (vq : vquery) (c : config) : query :=
match vq with
rel (R[[vrllc)
proj (AX[[avelems]llc) (configVQuery vq c)

| rel_v vr
| proj_v avelems vq

| sel_v vc vq

=
=
= sel (C[L[vcllc) (configVQuery vq c)
=

| cheQ e vql vqg2 if E[[ellc then configVQuery vql c

else configVQuery vq2 c

| prod_v vql vq2 = prod (configVQuery vql c) (configVQuery vq2 c)
| setU_v setop vql vq2 = setU setop (configVQuery vql c) (configVQuery vq2 c)
| empty_v = empty
end.
Notation "QL[vq 11 c¢" := (configVQuery vq c) (at level 50).

(* Variational Condition Configuration C[lc *)
Fixpoint configVCond (vc : vcond) (c : config) : cond :=
match vc with

| 1itCB_v b = 1itCB b

35

V-Condition Configuration:

Cl] : & —-C—0©

C[b]. = b

Claek]c=aek

Cla, ® ay]c = a; 0 ay

Cl~ 0,]c =~ C[0,].

Clbv1 V Ou2]le = Clbu1]e V Clby2]c
ClOu1 A Ou2]le = ClOu1]e A ClOwa]c

(C[[€<9 ;) >]] _ (C[[evl]]c, ifE[[e]]c
v1,Yv2/llc — (C[[Q'UQ]]C, OtherWiSe

VRA Configuration:

Qll:Qv—=C—Q

Qrle =R[r]e =1

Qra, gl = WAX[[AJI]CQ[[%]]C
Qlos,q0]c = UC[[GU]]CQ[[%]]C

@[[6<qv1,q02>]]c — {Q[[qvl]]c, if E[[e]]c

Q[qva]e, otherwise
Qlgv1 X quolle = Qlavile x Qlgvale
@[[QUl o QUQ]]C = Q[[QUl]]c o Q[[QUQ]]C
@[[5]]0 =&

Figure 3.2: Variational Condition(V-Condition) and Variational Relational Alge-
bra(VRA) Configuration. V-condition and v-query are assumed to be well-typed by
the configuration functions.

36

| elemOpV_v o a k = elemOpV o a k

| elemOpA_v o al a2 = elemOpA o al a2

| negC_v vc = negC (configVCond vc c¢)

| conjC_v vcl vc2 = conjC (configVCond vcl c) (configVCond vc2 c)
| disjC_v vcl vc2 = disjC (configVCond vcl c) (configVCond vc2 c)
| chcC e vcl vc2 = if semE e c then configVCond vcl c

else configVCond vc2 c
end.
Notation "C[[vc 11 c" := (configVCond vc c) (at level 70).

3.2 VRA Type System

VRA comes with a type system that statically checks if a v-query complies with the
underlying variational database. For example, let’s assume that we have a variational
database with v-schema Sy,3 = {r (alel,ag”“e)e2 }true. The Tqqtrueytrue T is not a valid
query for S,3 as its relation r does not have an attribute as. The Mg ~erytrue T is also
not a valid query S,3 as it intents to project aj from r for configurations ¢ that E[~
e1]c = true. But a; is not present in the relation r under these configurations. However,
T (g e1/eanes true T 18 valid as a; is present in 7 under the configurations ¢, Efe; AeaAes]. =
true. To be more explicit, a; is present in the relation r for all configurations ¢ that
E[e1Aea]. = true and for all configurations ¢, E[ej AeaAes]. = true — Efe;Aea]. = true.
Presence conditions of any attribute, a in @, of v-query mg,q, need to be at least as
specific as a’s presence condition in the result of g,.

Type of a v-query is a v-relation schema, result(A,)¢ where result is the relation
name which is fixed for all v-queries. The annotated set of v-attributes (A4,¢) describes
which v-attributes are present in the result of the v-query. As relation name is fixed for
all v-queries’ type, for brevity, types are considered to be annotated set of v-attributes

that are basically annotated v-set. Types of plain queries written in traditional RA are

V-Query Type Configuration:

QT[] : QT, - C — QT
QT[[QTU]]C = AX[[QT’U]]C

Figure 3.3: Variational Query(V-Query) Type Configuration.

37

sets of plain attribute. Plain and variational query type are encoded in Coq as qtype
and vqtype, respectively. Variational query type (v-type) configuration(Figure 3.3) is
done with annotated variational set configuration (Figure 2.5) and is enocoded in as
configVQtype.

(* Plain Query Type *)

Definition gtype : Type := (elems) Ytype.

(* Variaitonal Query Type *)

Definition vqtype : Type := avelems.

(* Variational Query Type Configuration QT[Jc *)
Definition configVQtype (vgt : vqtype) (c : config) : qtype := AX[[vqtllc.

Annotated v-set equivalence, subset property (Definitions 2.3.13, 2.3.17) as well as
its union and intersection operations (Definitions 2.3.33, 2.3.34) are renamed for v-query
type. V-query type equivalence, subset, union and intersection are denoted by =,4type

, C,U and N, respectively.

Definition 3.2.1 (V-query type equivalence). := Annotated v-set equivalence
Definition 3.2.2 (V-query type subset). := Annotated v-set subset
Definition 3.2.3 (V-query type union). := Annotated v-set union
Definition 3.2.4 (V-query type intersection). := Annotated v-set intersection

V-query type equivalence, subset, union and intersection operations are encoded in

Coq as equiv_vqtype, subset_vqtype, vqtype_union_vq and vqtype_inter_vq.

(* V-Query Type Equivalence *)
Definition equiv_vqtype : relation vqtype := fun X X’ = X =avset= X’.
Infix "=vqtype=" := equiv_vqtype (at level 70) : type_scope.

(* V-Query Type subset *)
Definition subset_vqtype (A A’: vqtype) : Prop := subset_avelems.

(* V-Query Type Union *)

Definition vqtype_union_vq (Q Q’: vqtype) : vqtype := avelems_union_vq.

(* V-Query Type Intersection *)
Definition vqtype_inter_vq (Q Q’: vqtype) : vqtype := avelems_inter_vq.

38

V-Query Typing Rules:

RELATION-E
r(Ay) € 8, e = e A pe(Sy) sat(e A e€)

/
e, Sy i A

EMPTYRELATION-E
e,S, Fe: {}false

ProJecT-E)) SELECT-E))
€, Sy F Qv - Avle QvAAe c Av/e €, Sy F Qv - Ave €7Ave F 0,
67SU':7er qv:QvAAe G,SU':UQU qv:Avel
CHOICE-E

eNe Sy F gy Api™! eN ~ €Sy B quo i Aypa®
e, Sy F e<‘]v1»%2> DA U Aye®

ProbpucT-E
€, Sy F quv1 - Avlel €, Sy F Guvo - AerQ Avlel N Av2€2 = {}

e, Sy F qv1 X Quo - Av161 U Av262

SETOP-E
€, Sy E qu1 - Avlel €, Sy E Quo - Av262 Avlel =T AU262

e, Sp F qui X qug : Ap1®!

Figure 3.4: Variational Relational Algebra(VRA) Typing Relation. The typing rule of a
join query is the combination of rules SELECT-E and PropucCT-E.

39

V-Condition Typing Rules (b: boolean tag, a: plain attribute, k: constant
value):

ATTOPTVAL-C

BooLEAN-C a® € A, k € domz(a)
e, Ay, b
e, Ay, Faek
ATrTOPTATT-C NEG-C
a1 € A, ax? € A, type(ay1) = type(az) e, Ay =0,
e, Ay Fajear e, Ay F~ 0,
CONJUNCTION-C DisjuNcTION-C
e)A’U l_ 0111 €, Av }_ 01)2 €, AU l_ 91)1 e)AU l_ 0’02
G,AU |—9v1/\9v2 e,Av |—9v1\/9v2

CHOICE-C
eNe Ay 0,y eN ~ e Ay Oyo

€, Av - e/<9v17 9v2>

Figure 3.5: Variational Condition(V-Condition) Typing Relation.

Typing relations of VRA are defined as a set of inference rule as in Figure 3.4. A
typing relation e, S, F ¢, : A,¢ states that in variational context e with underlying
v-schema S, v-query g, has type A, Ifa v-query doesn’t have a type, it is not a valid
query. Type system keeps track of the variation encoded in v-queries with the variational
context, e.

The RELATION-E rule states that in a variational context e with v-schema S, with

(€Ae)where

feature model pc(S,), a relation 7(A,)" that is contained in S, has type A,
e/ = e, A pc(Sy) and (e A €') is statisfiable. Note that, pc(S,) returns the feature model,
that is, the presence condition of the variational schema S,.

The ProJECT-E rule states that, in a variational context, e with v-schema S, as-
suming a v-query ¢, has type A€, the projection v-query mg, ¢, has type Q," "¢ given
that Q," "¢ C A,'¢". Remember that, variational projection query’s parameter, @), is

A~

an annotated v-set, ~" is the add-annot operation (Definition 2.3.30) that annotates an
already annotated set, and C is the annotated v-set subset operation (Definition 2.3.17).

The subset condition Q," "¢ C A,/ ¢ in the rule ensures that all plain attributes in @), are

40

present in A€ with such presence conditions that in each query variant of 7g, gy, to
be projected plain attribute set has the subset relationship with the set it is projecting
from.

The SELECT-E rule states that, in a variational context e with v-schema S, assuming
a v-query ¢, has type Ave/, the selection v-query oy, ¢, has the same type, given that, 8, is
well-formed in the same variational context e with respect to A,¢, that is, e, A,¢ E 6,.
A v-condition 6, is well-formed in a variational context e with respect to a v-set of
attributes A,, that is, e, A, F 8, if and only if 6, has the expected syntax and the plain
attributes present in the 6, are also present in A,.

The rule Cuoice-E states that, in a variational context e with v-schema S, the type
of choice of two v-queries ¢,; and g9, denoted by e{(qyi,qvs), is the union of ¢,; and
quvo’s types in the variational contexts (e Ae’) and (eA ~ ¢€), respectively, with the same
v-schema S, given that, ¢,; and g, are valid in these contexts. In variational contexts
for g,1 and ¢y, € is conjuncted with e’ and ~ €’ respectively as, in the choice structure,
qvy is selected when E[e']. = true and ¢, is selected when E[e’]. = false.

The rule PropucT-E sates that, in a variational context, e with v-schema S, the
type of the product of two v-queries ¢,; and g9, denoted by (gyq X gys), is the union of
the types of ¢,; and gy (Definition 3.2.3) in the same context with the same schema.
Gv1 and gyo’s types are needed to be disjoint.

Finally, the SETOP-E rule defines typing rule for v-set operation queries which states
that, in a variational context e with v-schema S, assuming types of two v-queries ¢,
and g, to be A, and A,5°? respectively, type of any v-set operation query among
them, denoted by (g © qug) is Ayp1®*, given that, Ay =pgeype Ava®.

VRA type system is encoded in Coq as inductive proposition, vtype which is included

below.

(kx ———- Bttt L

| Type of variational query (|=)
_—— *)

Inductive vtype :fexp — vschema — vquery — vqtype — Prop :=
(* -- EMPTYRELATION-E -- *)
| EmptyRelation_vE : forall e S {HndpRS:NoDupRn (fst S)}
{HndpAS: NODupElemRs S},
vtype e S (empty_v) ([], 1itB false)

(* —-- RELATION-E -- %)

| Relation_vE : forall e S {HndpRS:NoDupRn (fst S)} {HndpAS:NODupElemRs S}
rn {Hrn: empRelInempS rn}A {HA: NoDupElem A} e’,
InVR (rn, (A, e’)) S —
sat (e A (F) e’) —
vtype e S (rel_v (rn, (A, e’))) (A, (e A(F) e’))

(* -- PROJECT-E -- %)
| Project_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vq {HndpvQ: NoDupElemvQ vq} e’ A’ {HndpAA’: NoDupElem A’}
Q {HndpQ: NoDupElem (fst Q)},
vtype e S vq (A’, e’) —
subset_vqtype (Q""e) (A’, e’) —
vtype e S (proj_v Q vq) (Q~"e)

(* -- SELECT-E -- %)
| Select_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vq {HndpvQ: NoDupElemvQ vq} A {HndpAA: NoDupElem A} e’ vc,
vtype e S vq (A, e’) —
{e, (A, e) |-vc} —
vtype e S (sel_v vc vq) (A, e’)

(* -- CHOICE-E -- %)
| Choice_vE: forall e e’ S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vql {HndpvQl: NoDupElemvQ vql} vq2 {HndpvQ2: NoDupElemvQ
vq2} Al {HndpAA1l: NoDupElem A1} el A2 {HndpAA2: NoDupElem
A2} e2,
vtype (e A (F) e’) S vql (A1, el) —
vtype (e A (F) ((F) e’)) S vq2 (A2, e2) —
vtype e S (chcQ e’ vql vq2) (vqtype_union_vq (A1, el) (A2, e2))

(x -- PRODUCT-E -- %)
| Product_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vql {HndpvQ1l: NoDupElemvQ vqi} vq2 {HndpvQ2:
NoDupElemvQ vq2} A1l {HndpAAl: NoDupElem A1} el A2
{HndpAA2: NoDupElem A2} e2 ,
vtype e S vql (A1, el) —
vtype e S vq2 (A2, e2) —
vqtype_inter_vq (A1, el) (A2, e2) =vqtype= (nil, 1litB false) —
vtype e S (prod_v vql vq2) (vqtype_union_vq (A1, el) (A2, e2))

(* -- SETOP-E -- %)
| SetOp_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vql {HndpvQ1l: NoDupElemvQ vql} vq2 {HndpvQ2: NoDupElemvQ vq2}
A1 {HndpAA1l: NoDupElem A1} el A2 {HndpAA2: NoDupElem A2} e2
op,
vtype e S vql (A1, el) —
vtype e S vq2 (A2, e2) —

41

42

equiv_vqtype (A1, el) (A2, e2) —
vtype e S (setU_v op vql vg2) (A1, el).

Notation "{ e , S |=vq | vt }" := (vtype e S vq vt) (e at level 200).

| Type of (l-c) variational condition

*)

Inductive vcondtype :fexp — vqtype — vcond — Prop :=
| 1itCB_vC : forall e Q b,
vcondtype e Q (1itCB_v b)

| elemOpV_vC : forall e Q o a k,
(exists e : fexp, In (ae a e) ((fst Q) < (snd Q)) A sat(e)) —
vcondtype e Q (elemOpV_v o a k)

| elemOpA_vC : forall e Q o al a2,
(exists el : fexp, In (ae al el) ((fst Q) < (snd Q)) A sat(el)) —
(exists e2 : fexp, In (ae a2 e2) ((fst Q) < (snd Q)) A sat(e2)) —
vcondtype e Q (elemOpA_v o al a2)

NegC_vC : forall e Q c,
vcondtype e Q ¢ —
vcondtype e Q (negC_v c)

ConjC_vC : forall e Q cl c2,
vcondtype e Q c1 —

vcondtype e Q c2 —

vcondtype e Q (conjC_v cl c2)

DisjC_vC : forall e Q cl1 c2,
vcondtype e Q c1 —

vcondtype e Q c2 —

vcondtype e Q (disjC_v cl c2)

ChcC_vC : forall e e’ Q cl1 c2,

vcondtype (e A (F) e’) Q c1 —
vcondtype (e A (F) ((F) e’)) Q c2 —
vcondtype e Q (chcC e’ c1 c2).

Notation "{ e , Q |- vc }" := (vcondtype e Q vc) (e at level 200).

Note that, InVR in Relation vE rule is the Coq encoding of InVR in Definition 3.2.5.
InVR r(A4,)¢ S, states that there exists e such that r(A,)® is in S,, that is, 7(A4,)° € Sy

and €’ encodes both presence condition of relation r and feature model of v-schema S,

43

that is, ¢/ = e A pc(Sy).

Definition 3.2.5 (InVR). InVR r(A,)¢ S, states that Je.r(A,)° € S, and ¢ = e A
pe(Sy).

Below is the Coq encoding of InVR, encoded as InVR.

(* InVR *)
Definition InVR (vr:vrelS) (vs:vschema) : Prop :=
let rn := getr vr in
let vas := getvs vr in

let e’:= getf vr in

exists e, In (rn, (vas, e)) (fst vs) A (e A (F) (snd vs)) = e’.
Consequently, in Relation vE rule, e’ in InVR (rn, (A, e’)) S encodes both presence
condition of relation r and feature model of v-schema S,. Other typing rules in Coq
encoding are straightforward encoding of typing rules in Figure 3.4.

The function used to compute the type of plain queries is denoted by . || = . and its

definition and Coq encoding, type- is included in Appendix B.1. S || = ¢ returns the

type of the plain query ¢ with underlying pain schema S in RA type system.

3.3 Correctness of VRA Type System

typey

The VRA type system extends the RA type system to varia- q}’ / A"Ue
tional queries. In order to be correct with regard to the RA’s Q[[~]]ci EQT[H]c
type system, it must preserve variation encoded in a v-query. In \qr e, 4

other words, under same configuration, the configured v-type of

a v-query in VRA type system should be equivalent to the plain type of the configured
v-query in RA type system. For example, if in a variational context e with v-schema S,
a v-query ¢, has v-type 4, , then for all configurations ¢, with plain schema S[Sv]e, con-
figured v-query, Q[q,]. must have a plain type equivalent to QT[A,].. In the diagram

¢ and type refers to

on the right, type, refers to VRA type system, that is, e, S, F ¢, : Ay
RA type system, that is, S || = ¢ : A where S = S[S,].. Also, vertical arrows represent
corresponding configuration functions. Theorem 3.3.1 states the variation preservation

property of VRA type system.

Theorem 3.3.1. If a v-query q, has v-type Ave/, then for all configurations ¢, Q[qy].
has equivalent type to Q"]I‘[[Ave/]]C i.e.,

44

Ve. {e’Sv = Qv : Ave/} — S[[Sv]]c || = Q[[QU]]C =set QT[[Avech-

Theorem 3.3.1 is encoded in Coq as variation_preservation and its formal proof is
included in the Appendix B.2.

Theorem variation_preservation : forall e S vq A’ e’,
{e,Sl=vgl| (A,) } —
forall c, E[[el]lc = true —
(SLL s11c) I1= (QLL vqllc) =set= QTLL[(A’, e’)]1]c.
Proof. (See Appndix B.2). Qed.
Together with RA’s type safety [30], variation preserving property of VRA type system
implies that VRA type system is type safe as well.

One important thing to note here is that the variational conditions typing rules (Fig-
ure 3.5) are encoded as it is in [5]. However, the rules ATTOPTVAL-C and ATTOPTATT-C
are not variation preserving over variation elimination with respect to respective plain
condition typing rules. The problem is that these rules do not take variation associ-
ated with attributes in the variational schema of the VDB into account. One way they
could be fixed to make them variation preserving is to require attribute references to be
wrapped in choices that encode the variation information from the schema. This change

is reflected in the following modified rules for variational conditions.

ATTOPTVAL-C ATTOPTATT-C
a® € A, k € domz(a) a1t € A, ax?? € A, type(a1) = type(asz)
e, Ay € {a ek, false) e, Ay F (e1 Ae2){a ® ag, false)

However, this modification would make using v-queries more cumbersome since it re-
quires many extra choices. Instead, the problem is solved by changing the corresponding
plain condition typing rules (Appendix B.1) to make the SELECT-E rule in VRA variation

preserving with respect to our modified version of RA.

45

Chapter 4: Formal Encoding of Implicitly Annotated Variational

Queries

VDBMS provides an implicit way of writing v-queries to relieve the user from providing
information that can be inferred automatically. When writing an implicitly annotated
v-query, users do not need to include variation that is already encoded in the VDB and in
the sub-queries and only required to include any further constraint they want to impose,
if any. Recall that as stated in Section 3.2, presence conditions of any attribute, a in @,
of v-query mq, g, need to be at least as specific as a’s presence condition in the type of ¢,
where type of ¢, describes v-attributes present in its result. This requires user to repeat
variation when writing v-queries. For example, in the example VDB used in Section 3.2,

the v-schema is described by Sy3 = {r{ai®!, ag™ue}e

and gy3 = Mg e1neanegytrue 7
is a valid variational projection query with respect to S,3. Note that, g,3 includes a’s
presence condition (e; A e2) in 7. If implicit annotation is allowed, ¢,3 can be written
as g e3r omitting this information. Let’s consider another example. Assume a VDB
with v-schema S,4 = {r{a1,as®}*}"™"*. ¢, = Tgyirueytrue T a0d Qug = Ty, eqytrue T
are valid implicitly annotated v-queries with respect to S,4. The explicitly annotated
versions of gy and qus are Ty, einepnesyerue 7 aNd Ty, o nepnezneyyerue T rEspectively. gug =
Oc,(a1—as,true) 18 another valid implicitly annotated v-query with respect to Sy4. The
explicitly annotated version of qyg iS 0¢) pesnesnec(ar=as,true)-

The implicitly annotated variational query language has the same syntax as VRA
as in Figure 3.1. However, to type check an implicitly annotated v-query, the type
system needs to account for implicitness. Type system for implicitly annotated v-query,
called implicit VRA type system is provided in Section 4.1. In VDMS, type checked
implicitly annotated v-queries get explicitly annotated by the system with a function,
called explicitly annotating function as described in Section 4.2. Finally, Section 4.3
provides correctness theorems and corresponding formal proofs of implicit VRA type

system with respect to VRA type system.

46

4.1 VRA Type System for Implicitly Annotated V-Queries

VRA type system for implicitly annotated v-queries is similar to the VRA type system
except for the fact that it can account for implicitness. The type generated by implicit
VRA type system are explicitly annotated. Typing rules of implicit VRA system are
shown in Figure 4.1 and corresponding formal encoding, vtypeImp is in Appendix C.1.

The rule RELATION-E is same as before. It gets the type of relation r from v-schema
Sy, hence the type is explicitly annotated, that is, variation encoded in the v-schema is
present in the type.

The rule ProJECT-E is however different from the that in VRA type system. The
subset condition is replaced by a more lenient property, called subsumption, defined in
the following Definition 4.1.1.

Definition 4.1.1 (V-set subsumption). The v-set X, is subsumed by the v-set Xy,
denoted by Xy1 < Xya, iff V2 € Xy1. sat(er) — Fea. 22 € Xy and sat(er A eg),
i.e., for any plain element x in X, with presence condition ey, if ey is satisfiable then x
must also in X, with such presence condition that its conjuction with ey is satisfiable.
For example, {2true 3truel < [otrue 3f1 gtruey where sat(f1), however, {2true 31} 4
{Qtrue’ 3~f1}'

V-set subsumption is encoded in Coq as subsump_velems as follows.

(* Variational Set Subsumption *)
Definition subsump_velems (A A’: velems) :Prop :=
forall x e, In (ae x e) A A sat e — exists e’, In (ae x e’) A’ A sat(e A (F) e’).

V-set subsumption is extended to v-query type, that is, to annotated v-set in the following

Definition 4.1.2. This is called V-query type subsumption.

Definition 4.1.2 (V-query type subsumption). The v-query type X,1°' is subsumed by
the v-set X9, denoted by X,1%' < X0, iff Vo' € Xy1. sat(e); Neg1 — Jea. 22 €

Xyo and sat(eq A eg1 A ega A ea),

V-query type subsumption is encoded in Coq as subsump_vqtype as listed below.

(* V-query Type Subsumption *)
Definition subsump_vqtype (X X’: vqtype) : Prop :=
let (A, ea) := X in
let (A’, ea’) := X’ in
forall x e, In (ae x e) A A sat (e A (F) ea) —
exists e’, In (ae x e’) A> A sat (e A(F) ea A (F) e’ A(F) ea’).

47

Implicit V-Query Typing Rules:

RELATION-E

E%PT:REL{/EEISF;E r(A,) € Sy e = e, A pc(Sy) sat (e A e/)
€, g 7
! e,Sy Fr: Av(e Ae)
ProJECT-E)) SELECT-E))
e, Sy qu: A Q, < A e, SuFqy: A° e, A, + 0,
e, Sy F g, qu:QyN Av'e, e, Sy Fog, quv: Ave,
CHOICE-E

eNe, Syl quy : Ay eN ~ e, Sy F quo 1 Ay
e,Sy - e<Qv1>Qv2> : Avl61) Av262

ProbpucCT-E
€, Sy I vy - Av181 €, Sy quvo - Av262 Avlel N Av2€2 = {}

e, Sy - qu1 X Quo - Avlel U Av262

SETOP-E
e, Sy - qu1 - Avlel e,Sy Quo - Av262 Avlel =T Av2€2

€

e,S F qu1 X Qoo - Avl !

Implicit V-Condition Typing Rules (b: boolean tag, a: plain attribute, k:

constant value):

ATTOPTVAL-C

BOOLEAN-C a® € A, k € domz(a)
e,A, b
e, Ay Faek
ATTOPTATT-C NEeG-C
a1t € A, ax®® € A, type(ay) = type(az) e, Ay, -0,
e,Ay Faieas e, Ay F~ 0,
CONJUNCTION-C DisJuNcTION-C
e, Ay F 0y e, Ay F Oyo e, Ay F 0y e, Ay F Oy9
€, Av + 91}1 A 91}2 €, Av + 61}1 \% 61}2
CHOICE-C

eNe Ay 0, eN ~ e Ayt Oyo
67141) H e/<9v1791}2>

Figure 4.1: Implicit Variational Relational Algebra(VRA) and Variational Condition(V-
Condition) Typing Relation. The typing rule of a join query is the combination of rules
SELECT-E and ProDpUCT-E.

48

Now, in a variational context, e with v-schema S,, assuming a v-query ¢, has type A,’ ¢
the projection v-query mg, g, has type Q, N A€, given that, Q, < A,¢. Q, < A,
ensures that plain attributes in @Q,, will be in some variants of A, ¢ The type of sub-query
¢v is explicitly annotated, therefore, taking intersection of to be projected attributes @,
with ¢,’s type explicitly annotates the plain attributes in @), and also filters out any
plain attributes from @, that are not present q,’s type. Note that, it doesn’t check if),
is subset of ¢,’s type. However, it doesn’t affect the typing, that is, typing of projection
operation by Implicit VRA type system is still equivalent to its typing in VRA type
system as by definition of annotated v-set intersection (Definition 2.3.34), Q, N A, is
subset of 4,'¢. Hence, the type is correct.

However, the actual reason for subset check in VRA type system is to ensure that
all plain attributes in @), are present in A,'¢ with such presence conditions that in all
query variants of ¢,, to be projected plain set has the subset relationship with the set it
is projecting from. To have subset relationship in all query variants, presence conditions
of plain attributes in @, need to be at least as specific as their presence conditions in
A,¢. The implicitly annotated v-queries goes through an additional step of explicitly
annotating of v-queries right after the type check (Section 4.2) which replaces @, in
7Q, ¢v With Q, N A,’¢ that maintains the subset property.

The rest of the operations generate types directly from the sub-queries types which
are explicitly annotated. Hence, they do not require any changes from VRA type system.
In essence, implicit VRA type system is allows more flexibility on the user side that
VDBMS is equipped to handle to produce valid v-queries. Correctness of implicit VRA
type system and explicitly annotating function with respect to VRA type system (Section

4.3) guarantees that the process works as expected.

4.2 Explicitly Annotating V-Queries

Implicitly annotated v-queries makes VDBMS easier to use by relieving user from re-
peating variation information that is already encoded in the v-schema and sub-queries.
However v-queries still need to be explicitly annotated by the system otherwise when
decoupled from the v-schema, v-queries would lose variation information. Teh explicit an-
notation is done immediately after v-queries pass through the implicit VRA type system

and before they are sent to SQL generator. The function that VDMS uses to explicitly

49

Explicitly Annotating V-Queries:

agg, QUJ Sy = 09, {qﬂj Sy

T‘-QvQ’UJSv = ﬂ-vaAvlel LQUJ Sy wh’ere S'U l_ LqUJ Sy : A'Ule

e{qu1, o)l s, = e{lqv1]s,, [qvals,)

I
|
I
I
Lgv1 X quals, = [qv1]s, X Lqvals,
I
[qv1 © Qw2 s, = lav1]s, © [qva]s,
I

Figure 4.2: Explicitly Annotating Implicitly Annotated Variational Queries(V-Queries)
w.r.t. Variational Schema(V-Schema). V-queries passed to this function are assumed to
be well-typed.

annotate a v-query ¢, with respect to v-schema S, denoted by |¢,]s,, is in Figure 4.2.

The function returns relation queries as they are. Parameter (), of the projection v-
query mQ,q» gets intersected with the type of its explicitly annotated sub-query |g,]s, -
Sy lawls, @ A ¢ describes the type of |gy]s, in an empty variational context with v-

schema S,. In the resulted explicitly annotated projection v-query 7w QoA lqv]s,, the

parameter Q, N A,’ ¢ is subset of and explicitly annotated with respect to | gy |s,’s type.
For other v-queries, sub-queries are explicitly annotated within the same structure.
The explicitly annotating function is encoded in Coq as ImptoExp as below.

(* Explicitly Annotating Implicitly Annotated V-Queries w.r.t. V-Schema. *)
Fixpoint ImptoExp (vq: vquery) (vs:vschema) : (vquery) :=
match vq with
| (empty_v) = empty_v
| (rel_v (rn, (A_, e_’))) = 1let vr := (findVR rn vs) in
(rel_v (rn, (getvs vr, getf vr)))

| (proj_v Q vq) = let vq_s := (ImptoExp vq vs) in
let (A’, e’) := vtypeImpNOTC (1itB true) vs vqg_s in
let QinterQ’ := vqtype_inter_vq Q (A’, e’) in
proj_v QinterQ’ vq_s
| (cheQ e’ vql vq2) = chcQ e’ (ImptoExp vql vs) (ImptoExp vq2 vs)
| (prod_v vql vq2) = prod_v (ImptoExp vql vs) (ImptoExp vq2 vs)
| (setU_v op vql vq2) = setU_v op (ImptoExp vql vs) (ImptoExp vq2 vs)
| (sel_v ¢ vq) = sel_v ¢ (ImptoExp vq vs)

50

end.

Notation "[vq] vs" := (ImptoExp vq vs) (at level 90, left associativity).

In the formal encoding, explicitly annotating function ImptoExp uses vtypeImpNOTC to
get the type of v-queries. Implicit VRA typing rules are formally encoded as inductive
propositions. Following lemma proves that vtypeImpNOTC provides the same type as the
implicit VRA type system for any type-checked v-query.

Lemma vtypeImpNOTC_correct : forall e vs vq vt {HRn: NoDupRn (fst vs)},
{e, vs |- vq | vt} — (vtypeImpNOTC e vs vq) = vt.

Proof.
intros. induction H;
try(simpl vtypeImpNOTC) ;
try(rewrite IHvtypeImp);
try(rewrite (IHvtypeImpl HRn); rewrite (IHvtypeImp2 HRn));
try(reflexivity); try(assumption);try(assumption).
- apply InVR_findVR in H.

rewrite H. unfold getvs. unfold getf.

simpl. reflexivity. assumption.
Qed.

Correctness of explicitly annotating function with respect to implicit VRA type sys-

tem is formalized in the next Section 4.3.

4.3 Correctness of Implicit VRA Type System

Implicit VRA type system’s correctness is formalized with respect to the VRA type
system that if an implicitly annotated v-query is valid, that is, has a type in implicit
VRA type system then its explicitly annotated version is valid in VRA type system
with an equivalent type. Theorem 4.3.1 mathematically states the above statement.
Remember that, () indicates implicit VRA type system and (F) indicates VRA type

system.

Theorem 4.3.1. In a variation context e with v-schema Sy, for all v-queries qy,
{e,SFqu: A} = 3A, {e,S, F |qv]s, : A’} and A =pgeype A

Theorem 4.3.1 can be proved with two lemmas. The first lemma (Lemma 4.3.2)
proves correctness of explicitly annotating function with respect to implicit VRA type
system. For any v-query q,, if it has a type in implicit VRA type system, then its
explicitly annotated version |g¢,]g, has an equivalent type in implicit VRA type system.

51

Lemma 4.3.2. In a variation context e with v-schema Sy, for all v-queries q,,

{e,SuFqu: A} = 3A', {e,Su F [quv]s, : A’} and A =yqpype A’

Lemma 4.3.2 is encoded as ImpQ_ImpType_ExpQ_ImpType in Coq and the respective formal
proof is included in Appendix C.2.1

Lemma ImpQ_ImpType_ExpQ_ImpType e S q A:

{e,Sl- q | A} —

exists A’, { e, S |- [qlS | A> } A A =vqtype= A’.
Proof. (See Appndix C.2.1). Qed.

The second lemma states that any explicitly annotated v-query’s validity in implicit

VRA type system implies its validity in VRA type system with an equivalent type.

Lemma 4.3.3. In a variation context e with v-schema Sy, for all v-queries q,,

{e,SuF lauls, : A} = 3A', {e,Sv F |qv]s, : A’} and A =yqtype A’

Lemma 4.3.3 is encoded as ExpQ_ImpType_ExpQ_ExpType in Coq and the respective formal
proof is included in Appendix C.2.2

Lemma ExpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):
{e,S |- [qls | A} —
exists A, { e, S |=[qlS | A> } AN A =vgtype= A’.
Proof. (See Appndix C.2.2). Qed.

Implicit VRA type system correctness theorem (Theorem 4.3.1) is a corollary of
these two lemmas (Lemma 4.3.2 and 4.3.3). Theorem 4.3.1 is encoded in Coq as
ImpQ_ImpType ExpQ_ExpType and its formal proof is given below.

Theorem ImpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):
{e,Sl- q | A} —
exists A’, { e, S |=1[qlS | A> } A A =vqtype= A’.

Proof. intro HImp.

(*
HImp : {e, S |- q | A}

exists A’ : vqtype, {e, S |= [q] S | A’} A A =vqtype= A’
*)

(* From Lemma 4.3.2,
HImp:{ e , S |- q | A} — HExpQ:{ e , S |- [qlS | A’> } A A =vqtype= A’’
*)
apply ImpQ_ImpType_ExpQ_ImpType in HImp as HExpQ.
destruct HExpQ as [A’’ [HExpQ HEqiv’’]].

52

(* From Lemma 4.3.3,
HExpQ:{ e , S |- [qlS | A’ } — HExp:{ e , S I=I[qlS | A } A A’’=vqtype=A’
*)
apply ExpQ_ImpType_ExpQ_ExpType in HExpQ as HExp; try auto.
destruct HExp as [A’ [HExp HEqiv’] J.

exists A’.

(*
HExp : {e, S |= [q]l S | A’}
HEqiv’ : A’’ =vqtype= A’
HEqiv’’ : A =vqtype= A’’

{e, S |I=1[q] S | A’ A A =vqtype= A’
*)
split.
(* Goal: {e, S I=[q] S | A’} %)
apply HExp.
(* Goal: A =vqtype= A’ x)
transitivity (A’’); assumption.
Qed.

Theorem 4.3.1 along with variation preserving theorem for VRA type system (Theroem

3.3.1) implies that Implicit VRA type system is also variation preserving. Theorem 4.3.4

below states the variation preservation property for Implicit VRA type system.

Theorem 4.3.4. If a v-query q, has v-type A, then for all configurations ¢, Q[|qv]s,]c
has equivalent type to QT[A]c, i.e. {e, Sy qv: A} — S[Su]c |l = Qlav]s,]c =set QT[A].

Above theorem is encoded in Coq as variation_preservation_Imp and its formal proof
applies Theorem 4.3.1 and 3.3.1 in its premise subsequently to get to the conclusion.

Theorem variation_preservation_Imp e S q A (HndpQ: NoDupElemvQ q):
{e,Sl-ql A} —
forall c, E[[ellc = true —
I1= (QCL [qlS1]c) =set= QTL[Allc.

Proof. intros HImp c He.
(*
HImp : {e, S |- q | A}

1= (QLL [q] S]] c) =set= QT[[Al] ¢

*)
(* From Theroem 4.3.1,

HImp : {e, S |- q | A} — {e, S |I=[q]l S | A’} A A =vgtype= A’ *)
apply ImpQ_ImpType_ExpQ_ExpType in HImp; try auto.

destruct HImp as [A’ [HExpQ HEquiv]].
(* From Theorem 3.3.1,

{e, s I=1[q] s | A’ — HExpQ : |I= (QL[[q] S1] c) =set= QTL[A’]] c %)

destruct A’ as (A’, e’).
eapply variation_preservation with (c:=c) in HExpQ;
try auto.
(* A =vqtype= A’ — HEquiv : QT[[A]] c =set= QTL[[A’]] c %)
apply configVQtype_equiv with (c:=c) in HEquiv.
(*
HExpQ : |I= (QL[[q] S11 ¢) =set= QT[[A’]] ¢
HEquiv : QTL[Al] c =set= QT[[A’]] ¢

I1= (QCL [q] 811 c) =set= QTL[Al] c
*)
symmetry in HEquiv.
transitivity (QTL[A’]] c); auto.
Qed.

93

54

Chapter 5: Related Work

Variational databases were developed in previous work [6, 7, 5]. This thesis extends
the formalizations provided in this prior work and encodes all of the formalization in
the Coq proof assistant. Most significantly, this thesis provides new formalizations of
variational set properties defined in Section 2.3.1.1 and mechanized proofs of correctness
of variational set union and intersection operations, VRA type system, and the process
of handling implicitly annotated v-queries by the VDBMS.

Managing database variation in time or space has been studied extensively. Schema
evolution and data migration are two well supported temporal variations [27, 11, 4,
32, 29]. Data integration [14] is a form of variation in space. In the context of SPL,
where variation can occur in both time and space, temporal and structural variation
are addressed independently by researchers. Temporal variation in SPL is addressed
by adapting work on database evolution [18]. Work on structural variation focus on
generating specialized schema for each software variant in SPL [2, 22, 20]. Like VDBMS,
Humblet et al. [20] uses annotations that connect software features to schema elements.
Abo Zaid and De Troyer [2] also uses annotative approach, but works at a higher level
than VDBMS. However, unlike VDBMS, none of these work can be generalized to handle
arbitrary forms of variation not do they support interaction among variation and allow
writing queries that can express both temporal and structural variation in information
need.

In variational databases, variational schemas and variation tables (Sections 2.3.2 and
2.3.3) are based on existing work on variational sets [16, 36] which is a part of broader
variational data structure research that strives to support computing with variation at
runtime [28, 36]. Variational queries (Section 3.1) are supported through choice calculus.
Choice calculus is a formal language to represent and transform variation in software and
other structured documents [35].

An increasing number of formal system verification like the one presented in this
thesis has been carried out in recent years and has appeared as published case studies in

literature. Some notable work in formal verification are as follows. One of the success-

95

fully commercialized verification projects is the certified C compiler, CompCert [25, 26],
for which Leory’s work [25] received the POPL test of the time award in 2016. CakeML, a
variant of standard ML language [24] also comes with formally verified compiler. Klein et
al. [23] provide correctness proofs for a sel.4 Operating System Kernel. Gu et al. [17] for-
mally certified a concurrent kernel for the x86 architecture that has fine-grained locking.
Coq correctness proofs of an Raft distributed consensus protocol are presented in [31].
Blanchette et al. [9] provides formalization of conflict-driven clause learning calculus for
sat solver. Amazon web service (AWS) is increasingly investing in formal verification to
raise security level of its products [13] and has already formalized open source imple-
mentation of Transport Layer Service (TLS) Protocol that is used in numerous Amazon

services [12].

56

Chapter 6: Conclusion and Future Work

Variation in data is unavoidable and can appear in many forms within different contexts.
Consequently, variation management has been extensively studied by the database com-
munity including schema evolution, data integration, database versioning. However,
while there are many efficient context specific solutions, no fundamental solution ex-
ists that can handle variation of any form, irrespective of the context. Moreover, in
practice, variation of different forms can interact in a particular context. For example,
temporal and spatial variation in database collide in the context of SPL with no good
solution to support the interaction. Variational databases treat variation orthogonal
to data and extend relational databases with explicit encoding of variation within the
database through annotation. The elementary structure in the variation database is vari-
ational set. In the effort of formalizing variational databases, this thesis first formally
encodes the variational set and its operations, formally defines and encodes variational
set properties, and provides formal proofs of correctness of variational set operations.
Correctness of the variational set operations is defined with respect to respective plain
set operations. Then, it formally encodes variational database schema and content. In
addition to incorporating variation into the database, VDBMS also provides variational
queries, that is v-queries, that can explicitly express variation in its information need
and allows writing implicitly annotated v-queries without repeating variation that are
already encoded in the VDB and in the sub-queries. The variational relational algebra
(VRA) of VDBMS for writing v-queries comes with a static type system. This thesis
provides formally verification of the VRA type system as well as formally verifies the
process of handling implicitly annotated v-query by the VDBMS.

Formal proofs of most of the theorems are included in the Appendix. Two proofs
in Appendix C.2.6 and C.2.5 as well as the two, in Appendix C.2.4 and C.2.3 can be
combined into one proof. Also, the variational condition typing rules (Figure 3.5) are
encoded as they are defined in [5] where two typing rules are not variation preserving
with respect to the standard plain condition typing rules (see the discussion in Section

3.2). Immediate follow-up of this work could be studying the consequence of making

o7

these typing rules variation preserving on the usability of v-query and modifying the

formalization as such.

1]

2]

o8

Bibliography

Software Product Lines: Practices and Patterns. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

Lamia Abo Zaid and Olga De Troyer. Towards modeling data variability in software
product lines. In Terry Halpin, Selmin Nurcan, John Krogstie, Pnina Soffer, Erik
Proper, Rainer Schmidt, and Ilia Bider, editors, Enterprise, Business-Process and
Information Systems Modeling, pages 453-467, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-Oriented
Software Product Lines. Springer-Verlag, Berlin, 2016.

Gad Ariav. Temporally oriented data definitions: Managing schema evolution in
temporally oriented databases. Data & Knowledge Engineering, 6(6):451 — 467,
1991.

Parisa Ataei, Qiaoran Li, Eric Walkingshaw, and Arash Termehchy. Managing
variability in relational databases by VDBMS. CoRR, abs/1911.11184, 2019.

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. Variational databases. In
Proceedings of The 16th International Symposium on Database Programming Lan-
guages, DBPL 2017, Munich, Germany, September 1, 2017, pages 11:1-11:4, 2017.

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. Managing structurally
heterogeneous databases in software product lines. In Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare - VLDB 2018 Workshops, Poly and
DMAH, Rio de Janeiro, Brazil, August 31, 2018, Revised Selected Papers, pages
68-77, 2018.

Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. Principles of dataset versioning: Exploring the recreation/storage
tradeoff. Proc. VLDB Endow., 8(12):1346-1357, August 2015.

Jasmin Christian Blanchette, Mathias Fleury, and Christoph Weidenbach. A verified
sat solver framework with learn, forget, restart, and incrementality. In Proceedings of
the Twenty-Sizth International Joint Conference on Artificial Intelligence, IJCAI-
17, pages 4786-4790, 2017.

[10]

[11]

[12]

[13]

[14]

[15]

99

Goetz Botterweck and Andreas Pleuss. Fuvolution of Software Product Lines, pages
265-295. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. Schema versioning for
multitemporal relational databasestirecommended by peri loucopoulos. Information
Systems, 22(5):249 — 290, 1997.

Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm
MacCérthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron
Tomb, and Eddy Westbrook. Continuous formal verification of amazon s2n. In
Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verification,
pages 430-446, Cham, 2018. Springer International Publishing.

Byron Cook. Formal reasoning about the security of amazon web services. In Hana
Chockler and Georg Weissenbacher, editors, Computer Aided Verification, pages
38-47, Cham, 2018. Springer International Publishing.

AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

Martin Erwig and Eric Walkingshaw. The Choice Calculus: A Representation
for Software Variation. ACM Trans. on Software Engineering and Methodology
(TOSEM), 21(1):6:1-6:27, 2011.

Martin Erwig, Eric Walkingshaw, and Sheng Chen. An Abstract Representation
of Variational Graphs. In Int. Work. on Feature-Oriented Software Development
(FOSD), pages 25-32, 2013.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjoberg,
and David Costanzo. Certikos: An extensible architecture for building certified
concurrent os kernels. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI'16, page 653-669, USA, 2016. USENIX
Association.

Kai Herrmann, Jan Reimann, Hannes Voigt, Birgit Demuth, Stefan Fromm, Robert
Stelzmann, and Wolfgang Lehner. Database evolution for software product lines.
In DATA, 2015.

Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya Parameswaran.
Orpheusdb: Bolt-on versioning for relational databases. Proc. VLDB Endow.,
10(10):1130-1141, June 2017.

[20]

[21]

[22]

23]

60

Mathieu Humblet, Dang Vinh Tran, Jens H. Weber, and Anthony Cleve. Variabil-
ity management in database applications. In Proceedings of the 1st International
Workshop on Variability and Complexity in Software Design, VACE ’16, pages 21—
27, New York, NY, USA, 2016. ACM.

Christian S. Jensen and Richard T. Snodgrass. Temporal Query Languages, pages
3009-3012. Springer US, Boston, MA, 2009.

Niloofar Khedri and Ramtin Khosravi. Handling database schema variability in soft-
ware product lines. In 20th Asia-Pacific Software Engineering Conference, APSEC
20138, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume 1, pages 331—
338, 2013.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, and et al. Sel4: Formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 09, page
207-220, New York, NY, USA, 2009. Association for Computing Machinery.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. Cakeml:
A verified implementation of ml. SIGPLAN Not., 49(1):179-191, January 2014.

Xavier Leroy. Formal certification of a compiler back-end or: Programming a com-
piler with a proof assistant. SIGPLAN Not., 41(1):42-54, January 2006.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107-115, July 2009.

E. McKenzie and Richard Thomas Snodgrass. Schema evolution and the relational
algebra. Inf. Syst., 15(2):207-232, May 1990.

Meng Meng, Jens Meinicke, Chu-Pan Wong, FEric Walkingshaw, and Christian
Kastner. A Choice of Variational Stacks: Exploring Variational Data Structures. In
Int. Work. on Variability Modelling of Software-Intensive Systems (VaMoS), pages
28-35, 2017.

Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo.
Managing and querying transaction-time databases under schema evolution. Proc.
VLDB Endow., 1(1):882-895, August 2008.

Atsushi Ohori and Peter Buneman. Type inference in a database programming
language. In Proceedings of the 1988 ACM Conference on LISP and Functional
Programming, LFP 88, page 174-183, New York, NY, USA, 1988. Association for
Computing Machinery.

[31]

61

Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, page 305-320, USA, 2014. USENIX Asso-

ciation.

Richard Thomas Snodgrass. The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, USA, 1995.

The Coq Development Team. The coq proof assistant, July 2020.

Thomas Thiim, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
Towards efficient analysis of variation in time and space. In Proceedings of the 23rd
International Systems and Software Product Line Conference - Volume B, SPLC
19, page 5764, New York, NY, USA, 2019. Association for Computing Machinery.

Eric Walkingshaw. The Choice Calculus: A Formal Language of Variation. In
PhD Dissertation. Oregon State University, 2013. http://hdl.handle.net/1957/
40652.

Eric Walkingshaw, Christian Kéastner, Martin Erwig, Sven Apel, and Eric Bodden.
Variational Data Structures: Exploring Trade-Offs in Computing with Variability.
In ACM SIGPLAN Symp. on New Ideas in Programming and Reflections on Soft-
ware (Onward!), pages 213-226, 2014.

APPENDICES

62

63

Appendix A: Formal Encoding of Variational Set

Variation sets are discussed in Section 2.3.1. Formal encoding VDB requires encoding of
both plain set and v-set. Following sections include encoded definitions and mechanized

proofs required for formalizing variational sets.

A.1 Plain Set and V-set Properties

A.1.1 nodupelem Equivalence Property

nodupelem converts any variational set to an equivalent variational set with No-Dup-FElem
property. Following lemma nodupelem gen equiv_velems_list formally proves that this
function maintains equivalency.

Lemma nodupelem_gen_equiv_velems_list: forall v, v =vlist= (nodupelem v).
Proof. intro v.

functional induction (nodupelem v) using nodupelem_ind;
unfold "=vlist="; unfold "=vlist=" in *; intro c; simpl.

+ reflexivity.

+ destruct (E[[el]l c¢) eqn:He;

[apply cons_equiv_list |]; auto.

+ destruct (E[[e]l]l c¢) eqgn:He.

(x (ELL el]l) = true *)

++ rewrite orb_true_l.

specialize IHvO with c.

apply cons_equiv_list with (a:=a) in IHvO.

rewrite <— IHvO. rewrite existsbElem_InElem in el.

unfold "=list=".

(* Goal: In a0 (a :: X[[vs]] ¢) «<» In a0 (a :: X[[removeElem a vs]] c) *)
intro a0. split; intro.

+++ (* — %) simpl in H. destruct H. rewrite H. simpl. eauto.
destruct (string_dec a0 a) eqgn:HaaO.

rewrite e0. simpl. eauto.

apply removeElem_neq_In with (vs:=vs) (c:=c) in n as HInrm.
simpl. rewrite HInrm in H. eauto.

+++ (% < *) simpl in H. destruct H. rewrite H. simpl. eauto.
destruct (string_dec a0 a) eqgn:HaaO.

rewrite e0. simpl. eauto.

apply removeElem_neq_In with (vs:=vs) (c:=c) in n as HInrm.

64

simpl. rewrite < HInrm in H. eauto.

(x (ELL ell c) = false *)

++ simpl. destruct (E[[get_annot a vs]] c) eqn:Hget.

+++ (x (E[[get_annot a vs]] c) = false *) specialize IHvO with c.
apply cons_equiv_list with (a:=a) in IHvO.

rewrite <- IHvO. apply get_annot_true_In in Hget.

apply removeElem_In in Hget. auto.

+++ (x ((E[[get_annot a vsl]] c) = false *) rewrite < IHvO.
apply get_annot_false_notIn in Hget.

apply removeElem_notIn in Hget. auto.

Qed.

A.1.2 Plain Set Equivalence Relation

Plain set equivalence in Defintion 2.3.11 is encoded as equiv_elems in Coq (See Section
2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_elems is Reflexive *)

Remark equiv_elems_refl: Reflexive equiv_elems.
Proof.

intros A a. split; reflexivity.

Qed.

(* equiv_elems is Symmetric *)

Remark equiv_elems_sym : Symmetric equiv_elems.
Proof.

intros A A’ H a.

split; symmetry;

apply H.

Qed.

(* equiv_elems is Transitive *)

Remark equiv_elems_trans : Transitive equiv_elems.
Proof.

intros A A’ A’ H1 H2 a.

split; try (transitivity (In a A’’));

try (transitivity (count_occ string_eq_dec A’’ a));
try (apply H1);

try (apply H2).

Qed.

(* equiv_elems is an Equivalence relation *)
Instance elems_Equivalence : Equivalence equiv_elems := {
Equivalence_Reflexive := equiv_elems_refl;

Equivalence_Symmetric := equiv_elems_sym;

65

Equivalence_Transitive := equiv_elems_trans }.

A.1.3 V-set Equivalence Relation

V-set equivalence in Defintion 2.3.12 is encoded as equiv_velems in Coq (See Section
2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_velems is Reflexive *)

Remark equiv_velems_refl: Reflexive equiv_velems.
Proof.

intros A a. reflexivity.

Qed.

(* equiv_velems is Symmetric *)

Remark equiv_velems_sym : Symmetric equiv_velems.
Proof.

intros A A’ H a.

symmetry.

apply H.

Qed.

(* equiv_velems is Transitive *)

Remark equiv_velems_trans : Transitive equiv_velems.
Proof.

intros A A’’ A’ H1 H2 a.

transitivity (configVElemSet A’’ a).

apply H1.

apply H2.

Qed.

(* equiv_velems is a Equivalence relation *)

Instance velems_Equivalence : Equivalence equiv_velems := {
Equivalence_Reflexive := equiv_velems_refl;
Equivalence_Symmetric := equiv_velems_sym;
Equivalence_Transitive := equiv_velems_trans T.

A.1.4 Annotated V-set Equivalence Relation

Annotated V-set equivalence in Defintion 2.3.13 is encoded as equiv_avelems in Coq (See
Section 2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_avelems is Reflexive x)

Remark equiv_avelems_refl: Reflexive equiv_avelems.

Proof.

intro X. destruct X. unfold equiv_avelems. split;
reflexivity.

Qed.

(* equiv_avelems is Symmetric *)

Remark equiv_avelems_sym : Symmetric equiv_avelems.

Proof.

intros X Y. intros H. destruct X, Y. unfold equiv_avelems.
unfold equiv_avelems in H. symmetry. apply H.

Qed.

(* equiv_avelems is Transitive *)

Remark equiv_avelems_trans : Transitive equiv_avelems.
Proof.

intros X Y Z. intros H1 H2.

destruct X as (vx, fx), Y as (vy, fy), Z as (vz, fz).
unfold equiv_vqtype in H1.

unfold equiv_vqtype in H2.

unfold equiv_vqgtype.

intro c. tramsitivity (QTL[[(vy, fy)1] c); auto.

Qed.

(* equiv_avelems is a Equivalence relation *)

Instance avelems_Equivalence : Equivalence equiv_avelems := {
Equivalence_Reflexive := equiv_avelems_refl;
Equivalence_Symmetric := equiv_avelems_sym;
Equivalence_Transitive := equiv_avelems_trans }.

A.1.5 V-Set Subset Correctness

Theorem subset_velems_correctness A A’ (HndpA: NoDupElem A) (HndpA’: NoDupElem
A):
subset_velems_exp A A’ <> (forall c, subset (X[[Allc) (X[[A’]Ic)).
Proof. split;
generalize dependent A’; generalize dependent A;
induction A’ as [|(a’, ea’) A’ IHA’];
intros HndpA’ H.

(¥Goals — : 1: A’ :=[1 , 2: A’ := [ae a ’> ea’:A’]x)

1, 2: unfold subset_velems_exp in H; unfold subset; intros c x;

try (split; (x 1: subset A [] to 1-1: In A [] 1-2: count A [] *)

(x 2: subset A [_:A’] to 2-1: In A [_:A’][] 2-2: count A [_:A°][] %)

66

[(* 1-1 2-1 In: intro In x X[[Al]lc =)

intro HInxA |

(¥ 1-2 2-2 count: destruct (count_occ A x) *)
destruct (count_occ string_eq_dec (X[[Al] c) x) egn:Hcount;
[(x Case 0: count_occ string_eq_dec (X[[A]J] c) x = 0 *)

(* trivial O <= any *) simpl; auto; apply (count_occ_ge_0) |

(* Case Sn: count_occ 1 x = S n — HInxA: In x X[[Allc *)
pose (gt_Sn_0 n) as HInxA; rewrite < Hcount in HInxA;
rewrite < count_occ_In in HInxA]

1); (x1-1 -1, 2-1 — 2, 2-1 — 3, 2-2 — 4%)

(* In x X[[Al]lc — exists e, In (x, e) A A E[[e]llc = true *)

rewrite <~ In_config_exists_true in HInxA;

destruct HInxA as [e HInxeA];

specialize H with x e c;

(*x cereate subset premise H’: In (x,e) A A sat ex*)

assert (H’: In (ae x e) A A (E[[el] c) = true);

try(auto) ;

(* get subset conclusion with H’> — HIne’: In (x, e’) A> A Hsat: e — e’ *)
apply H in H’; destruct H’ as [e’ He’];

destruct He’ as [HIne’ Hsat]; simpl in HIne’.

(x 1, 2: In x [1 , count x []
destruct (In (x, e’) [1) *)
1, 2: try (destruct HIne’). (* proving 1,2 changes goals* 3— 1, 4— 2 *)

(x 1, 2: In x [_:A’] , count [_:A’] x *)

1, 2: destruct HInxeA as [HInxeA Hetrue];

(x (E[[e]]l ¢) = true — (E[[e’]] c) = truex)
(*rewrite not_sat_not_prop in Hsat;

rewrite < sat_taut_comp in Hsat;

specialize Hsat with c; apply Hsat in Hetrue;*)

(* 1: In x (X[[ae a’ ea’ :: A’]J] ¢c) — (x=2a’ A ea’ = true) V In x X[[A’]]c %)

(x 2: count_occ (X[[ae a’ ea’ :: A’]] ¢c) x —
[case (x = a> A ea’ = true): S (count_occ X[[A’]]c x)
case _ : count_occ X[[A’]]c x *)
(* destruct HIne’: (ae a’ ea’ = ae x e’ V In (ae x e’) A’) %)

try (destruct HIne’ as [Heq | Hin];

[(* Case Heq: ae a’ ea’ = ae x e’ *)
inversion Heq; subst;
simpl; rewrite Hsat; simpl

67

(* Case HIn: In (ae x e’) A’x) (* proves Goal 1 right *)
1). (xx 1— 1(Heq), 2(HIn) 2— 3(Heq), 4(HIn)x*)

3, 4: apply NoDupElem_NoDup_config with (c:=c) in HndpA as Hcount’;
rewrite (NoDup_count_occ string_eq_dec) in Hcount’; specialize Hcount’ with x;

assert (Hn: n = 0); try (Lia.lia); rewrite Hn;

inversion HndpA’; subst; apply notInElem_notIn_config with (c:=c) in H2;

rewrite (count_occ_not_In string_eq_dec) in H2.

{ (* 1: 1- Case Heq *)left. reflexivity. }
{ (x 2: 1- Case HIn *)simpl. destruct (E[[ea’]] ¢); try simpl;
try right; rewrite < In_config_exists_true; exists e’;

eauto. }

{ (* 3: 2- Case Heq *)case (string_eq_dec x x); intro Hx; [|contradiction].
Lia.lia. }

{ (x 4: 2- Case HIn *)simpl. destruct (E[[ea’]] ¢); try simpl;
[case (string_eq_dec a’ x); intro; [Lia.lia |] |];

assert (HInxA’: In x (X[[A°]1]c));

try(rewrite <— In_config_exists_true; exists e’; eauto);
rewrite (count_occ_In string_eq_dec) in HInxA’;

apply NoDupElem_NoDup_config with (c:=c) in H4 as HcountA’;
rewrite (NoDup_count_occ string_eq_dec) in HcountA’;

specialize HcountA’ with x; Lia.lia. }
(x < %)
(* case []: %)
(** Prove with two facts: subset (X[[A]llc) [] — subset_velems_exp A []
1. forall c, (X[[Allc) = [0 — subset_velems_exp A []
2. exists ¢, (X[[Allc) <> [1 — subset (X[[Allc) [1 =*)
(* introduce (forall c, (X[[Allc) = [1) V (exists c, (X[[AlJc) <> [1) #)
pose Classical_Prop.classic as Hclassic.
specialize Hclassic with (forall c, (X[[All ¢) = [1).

destruct Hclassic as [Hall | Hexists].

{ (x case 1: forall c, (X[[Allc) = [] *)

apply nilconfig_subset_nil. assumption. }

{ (x case 2: exists c, (X[[Allc) <> [1 *)
apply not_all_ex_not in Hexists. destruct Hexists as [c Hexists].

68

69

specialize H with c.
destruct ((X[[Al] c)) eqn: HAc. contradiction. simpl in H.
apply not_subset_cons_nil in H. destruct H. }

(x case (ae a’ ea’: A’): x)

unfold subset_velems_exp. intros x e c HInxeA.
destruct HInxeA as[HInxeA Hsat].

unfold subset in H.

specialize H with ¢ x.

destruct H as [HInxAA’ Hcount].

assert (HInxA: In x (X[[Al]c)).

rewrite <— In_config_exists_true. exists e. eauto.
apply HInxAA’ in HInxA as HInxA’. simpl in HInxA’.
destruct (E[[ea’]] c) eqn: Hea;

[simpl in HInxA’;
destruct HInxA’ as [Heq | HInxA’];
[exists ea’; inversion Heq; subst; split;

[simpl; left; reflexivity | auto]l | 1 | 1.

1, 2: rewrite <~ In_config_exists_true in HInxA’;
destruct HInxA’ as [e’ HInxA’];

destruct HInxA’ as [HInxe’A’ He’];

exists e’; split;

[simpl; right; auto | auto].

Qed.

A.2 Plain Set and V-set Operations

V-set operations are defined to extend plain set operations for variational sets. Following

sections provide formal proofs of expected properties of these operation.

A.2.1 Plain Set Union Identity

(* Plain set union nil-r *)
Lemma elems_union_nil_r: forall A, elems_union A [] =set= A.

Proof. intros. simpl. reflexivity. Qed.

(* Plain set union nil-1 %)
Lemma elems_union_nil_1l: forall A (H: NoDup A), elems_union [] A =set= A.

Proof. intros. unfold elems_union. unfold equiv_elems.

intro a. split. split.

- rewrite set_union_iff. simpl. intro.

destruct HO. destruct HO. auto.

- intro HO. rewrite set_union_iff. eauto.

- pose (NoDup_nil elem) as Hnil.

pose (set_union_nodup string_eq_dec Hnil H) as Hndp.
destruct (in_dec string_eq_dec a A).

+ apply (set_union_intro2 string_eq_dec) with (x:=[]) in i as HsetU.
rewrite NoDup_count_occ’ in Hndp, H.

rewrite Hndp, H.

reflexivity. exact i. exact HsetU.

+ assert (n’: In a []). simpl. unfold not. eauto.
pose (conj n’ n) as Hnn’.

rewrite notIn_set_union in Hnn’.

rewrite count_occ_not_In in n, Hnn’.

rewrite n, Hnn’. reflexivity.

Qed.

A.2.2 V-Set Union Identity

(* V-set union nil-r *)

Lemma velems_union_nil_r : forall A (H: NoDupElem A), velems_union A [] = A.
Proof. intro A.

intro H. unfold velems_union. simpl.

apply nodupelem_fixed_point. auto.

Qed.

(* V-set union nil-1 *)

Lemma velems_union_nil_1 : forall A (H: NoDupElem A), velems_union [] A =vset= A.

Proof.

induction A. simpl.

reflexivity. simpl.

intro H.

unfold velems_union.

simpl. destruct a as (a, e).

(x get In a set_union from context and rewrite set_add *)
pose (NoDupElem_NoDup H) as Hnodup.

inversion Hnodup; subst.

apply (contrapositive
unfold set_In in H2.

_ _ (set_union_emptyL velem_eq_dec (ae a e) A)) in H2.
pose (notIn_set_add_equiv_velems (ae a e) (set_union velem_eq_dec [] A)) as
Hset_add.

rewrite (nodupelem_equiv (Hset_add (H2))).

clear Hnodup.

(* get InElem a set_union from context and rewrite nodupelem *)

70

71

inversion H; subst.

assert(HInnil: InElem a []). simpl. eauto.
pose (conj HInnil H4) as H4’.

apply (notInElem_set_union a [] A) in H4’.
pose nodupelem_not_in_cons as Hcons.

apply (Hcons a e ((set_union velem_eq_dec [] A))) in H4’.
rewrite H4’.

apply IHA in H6.

unfold velems_union in H6.

apply cons_equiv_velems. assumption.

Qed.

A.2.3 V-set Union Variation Preservation

V-set union variation preservation theorem is given below. A mathematical proof is
included for this theorem as its formal proof is a bit complicated than others and also to
demonstrate the correspondence between mathematical and formal proofs at least once

in the thesis. The mathematical proof is followed by the respective formal proof.

Theorem A.2.1. For any two v-sets, X, and X, X[X,UX,]¢ =set X[X,]UX[X,]
Proof. Proof by induction on X,’.
e Base case X’ = {}: Proof by cases of X,.

— case Xy = {}: X[{}U{}c =set X[{}c UX[{}ec => {} =set {} => True (reflexivity)
— case Xy = (a® : Xy):
X[(a® :: Xu) U {}e =set X[(a® 2 Xo)]e UX[{}]e
=> X[{} e =set X[{}e (From lemma 2.3.21 and 2.3.23)
=> True (reflexivity)

e Inductive case X,’ = (a’e' X))

From inductive hypothesis,

VX, X[Xo UXy'le Zset X[Xo]e UX[Xo]e (2.1)
we need to prove t,hat i.e. our goal is,
X[Xo U (@ Xo")]e Zset X[Xo]e UX[(@® = Xo))]e (2.2)

From No-Dup-Elem property (Definition 2.3.1) of v-set (a’e, = Xy'), we get,
~ In-Elem da' X,’ (2.3)
~In a® X,/ (2.4)

Proof by cases (In a’® X,).

!
— caseln a’¢ X,:
!’
U
In a'® X,

From eq. 2.5 we get,
’
X[Xp U ('€ :: X)]e Zset X[Xo U Xp']e

From eq. 2.6, our goal in eq. 2.2 becomes,
X[Xo U Xo']e Zset X[Xo]e UX[(@’® X0u")]e

=> X[XyUXy' e Zset X[Xo]ec U (if E[e’]e then (a:: X[Xy']e) else X[Xo']e)

72

(2.5)

(2.6)

(From Defintion (Fig. 2.4))

(2.7)
Proof by cases of E[e/]c = True.
x case Efe']c = True:
Eq. 2.7 becomes,
X[Xo U Xy Tle =set X[Xo]e U (a’ : X[Xo']e) (2.8)
Simplifying plain set union on the R.S. gives,
X[Xo U Xy]ec =set Set-add o’ (X[Xy]e UX[X0]e) (2.9)
From Eq. 2.5, we get,
Ina® X
=> In a’ X[Xu]e
=> In o’ (X[Xo]e UX[X0'Te)
=> Set add a’ (X[Xv]e UX[Xo']e) = X[Xo]e UX[X0']e (2.10)
Rewriting equation 2.10 in eq. 2.9,
X[Xy U Xo']le Zset X[Xo]e UX[X0']e (2.11)
which is T'rue by induction hypothesis (Eq. 2.1).
x case E[e']. = False:
Eq. 2.7 becomes,
X[Xo, U X’ul}]c =set X[Xo]e U (a' i X[[Xv/]]c) (2.12)
which is T'rue by induction hypothesis (Eq. 2.1).
— case ~ In a'¢ Xo:
~In ' X, (2.13)

Even if variational element a’¢ not in Xy, plain element a’ can still be in X, with some other

annotation or can be absent.
Proof by cases of (In-Elem a’ X,).

% case In-Elem a’ X,:
In-Elem o X,

From eq. 2.13 and 2.14,

(2.14)

Xy U (G,E, 1 Xy') Spset @ e’ v get-annot o’ (XyUXy') . ((remove-elem a’ X,) U X,") (2.15)

L.S. of our goal (Eq. 2.2),
LS. Zaet X[Xy U (a® : X,)]e
=set X[a’ e’V get-annot o’ (XyUXy') . ((remove-elem a’ Xu) U Xo')]ec
=set if (E[€ V get-annot a’ (Xy U Xy)]e)
then a’ :: X[((remove-elem a’ X,) U Xo')]e
else X[((remove-elem a’ X,) U Xy')]e

R.S. of our goal (Eq. 2.2),
R.S. Zset X[Xo]e UX[(@’® :: Xu))]e

73

(Rewriting eq.2.15)

(From Defintion (Fig. 2.4))
(2.16)

=set X[Xo]e U (if E[e’]c then (a’ :: X[Xy']c) else X[Xv']e) (From Definition (Fig. 2.4))

(2.17)
Proof by cases of (E[e’]c)-
- case E[e']c = True:
From eq. 2.16 and 2.17 we get,
L.S. =set if (E[TrueV get-annot a’ (X, U Xy')]e)
then a' :: X[((remove-elem a’ Xy) U Xy")]e
else X[((remove-elem a’ X,) U Xo')]e
=seta’ = X[((remove-elem a’ Xy) U Xy")]e (2.18)
R.S. =set X[Xo]e U (a’ :: X[Xo']e) (2.19)
Hence, our current goal is,
a’ :: X[((remove-elem a’ X)) U X')]e Zset X[Xo]e U (@ X[Xo]e) (2.20)
From Eq. 2.3 we get,
X[Xo]e U (@ X[Xo']c) Zset @’ =2 (X[remove-elem @’ Xy]c UX[Xy']e) (2.21)

Applying transitivity on eq. 2.20 and 2.21, we get,

a’ :: X[((remove-elem a’ Xy) U X/)]e Zset @’ 2 (X[remove-elem @’ Xy]c UX[Xy']c)

which is True by induction hypothesis (Eq. 2.1).

- case E[e']. = False :
From eq. 2.16 and 2.17 we get,
L.S. =set if (E[get-annot a’ (X, U Xy')]e)

(2.22)

then a' :: X[((remove-elem a’ Xu) U Xu')]e

else X[((remove-elem a’ Xy) U Xo")]ec
R.S. =set X[Xo]e UX[X0']e

If,
E[get-annot a’ (Xy U Xy')]e = True

from eq. 2.23 and 2.24 we get,

(2.23)
(2.24)

(2.25)

a’ : X[((remove-elem a’ Xy) U Xy)]e Zset X[Xole UX[X0']e (2.26)

74

From definition of get-annot (Def. 2.3.4),
E[get-annot a’ (Xy U Xy)]e = True => In-Elem o’ (X, U X,)
=> In-Elem a’ X, (From eq.2.3)
’ ’
=> In a/(get—(mnot a’ (X,UXy")) X,
=> Ind X[Xy]e (From eq.2.25)

(2.27)
From Eq. 2.27 we get,

X[Xo]e UX[X0]e =set @’ 2 (X[remove-elem a’ Xy]e UX[Xoy']c) (2.28)
Rewriting eq. 2.28 on the R.S. of eq. 2.26
a’ :: X[((remove-elem a’ X) U Xo')]e Zset a’ i1 (X[remove-elem a’ Xy]c UX[Xo']e)
(2.29)
which is T'rue by induction hypothesis (Eq. 2.1).

Else if,
E[get-annot a’ (X, U X,')]e = False (2.30)

from eq. 2.23 and 2.24 we get,
X[((remove-elem @’ X)) U Xo")]e Zset X[Xo]e UX[Xo']e (2.31)
From definition ofget-annot (Def. 2.3.4),
E[get-annot @’ (Xy U Xy')]e = False =>~ In-Elem a’ (X, U X,’)
=>~ In-Elem da’ X, (From eq.2.3)
=>~ In a’ X[Xy]ec (2.32)
From Eq. 2.32 we get,
X[Xv]e UX[Xo' e =set X[remove-elem a’ Xy]c UX[Xy e (2.33)
Rewriting eq. 2.33 on the R.S. of eq. 2.31,
X[((remove-elem a’ X,) U Xy)] =set X[remove-elem a’ Xy]e UX[Xy']c (2.34)
which is T'rue by induction hypothesis (Eq. 2.1).

x case ~ In-Elem a’ X,:

~ In-Elem a' X, (2.35)
From eq. 2.13 and 2.35, we get,
Xy U (@ 5 X)) Suser 3 (X UXL) (2:36)
Rewriting above eq. 2.36 on the R.S. of our goal in eq. 2.2,
X[a'® (XUt Xo)]e Zset X[Xo]e UX[(@® = X))o (2.37)
From eq. 2.35 and 2.3, we can re-write eq.2.37 as,
X[XoU : Xo'Je Zset X[Xo]e UX[Xo]c (2.38)

which is T'rue by induction hypothesis (Eq. 2.1).

Therefore, goal (Eq. 2.1) for inductive case is True for all cases. |

Formal proof of the above theorem is given below.

Theorem velems_union_is_variation_preserving : forall A A’ c¢ (HA: NoDupElem A)
(HA’: NoDupElem A’),

X[[velems_union A A’]]c =set= elems_union (X[[Al]l <) (X[[A’1] ¢).

Proof. intros A A’. generalize dependent A. induction A’ as [la’ A’ THA’].

- (% case A’ = [] %)

(*

X[[velems_union A []1]] c =set= elems_union (X[[Al] <) []
*)
destruct A as [| a A]; intros.
+ (x case A = [] *) simpl. reflexivity.
+ (¥ case A = (a :: A) *) simpl (X[[_1]1) at 3.
(* forall X, velems_union X [] =vset= [] A forall x, elems_union x [] =set=
[1 %)
rewrite velems_union_nil_r, elems_union_nil_r.

reflexivity. assumption.

- (*x case A? = (a :: A’) *)
intros A ¢ Ha Ha’. destruct a’ as (a’, e’).
(* IHA’ : X[[velems_union A A’]] c =set= elems_union (X[[Al] <) (X[[A’1] <)

Ha’ : NoDupElem (ae a’ e’ :: A’)
X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] <) (X[[
ae a’ e’ :: A’]] ¢)

*)

(* inversion NoDupElem (ae a’ e’ :: A’) — InElem a’ A’ *)

inversion Ha’ as [| a’’ e’’ A’’ HnInElemA’ HNdpElemA’]; subst.

simpl set_union.
(* InElem a’ A’ — In (ae a’ e’) A’ %)
pose (NoDupElem_NoDup Ha’) as Hndp.

inversion Hndp as [la’’ e’’ HnInA’ HNDpA’]; subst. clear Hndp.

(x IHA’ : X[[velems_union A A’]] c =set= elems_union (X[[A]] c) (X[[A’]1] <)

HnInA’ : In (ae a’ e’) A’

HnInElemA’ : InElem a’ A’

X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] c) (X[L
ae a’ e’ :: A’]] ©)

*)

(*x Prove by cases of In (ae a’ e’) A %)
destruct (in_dec velem_eq_dec (ae a’ e’) A) as [HInA | HnInA].

+ (* case In (ae a’ e’) A %)

75

(* IHA’ : X[[velems_union A A’]] c =set= elems_union (X[[A]] ¢) (X[[A’]]

c)
HnInA’ : In (ae a’ e’) A’
HnInElemA’ : InElem a’ A’
HInA : In (ae a’ e’) A
X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] c)
(XLL
ae a’ e’ :: A’]] <)
*)
(* HInA : In (ae a’ e’) A — velems_union A (ae a’ e’ :: A’) =vset=

velems_union A A’ *)

apply velems_union_InA with (B:=A’) in HInA as Hequiv.

unfold "=vset=" in Hequiv. rewrite Hequiv.

c =set= elems_union (X[[Al] ¢) (X[[ae a’ e’

(€
X[[velems_union A A’]]
A°11 ©
*)
simpl.
(€
X[[velems_union A A’]] c =set= elems_union (X[[Al]l c)
(if E[[e’]] c then a’ :: X[[A’]] c else X[[A’]] c)
*)

destruct (E[[e’]] c) eqn:He’.
++ (* case (E[[e’]] c) = true *)
(* HInA : In (ae a’ e’) A

X[[velems_union A A’]] c =set= elems_union (X[[Al]l c) (a’ :: X[[A’]1] <)

*)

simpl elems_union. unfold elems_union.

unfold elems_union in IHA’.
(* HInA : In (ae a’ e’) A

X[[velems_union A A’]] c =set= set_add string_eq_dec a’ (elems_union

(XLL A1l o (XL[[2’1 <))

*)

(* HInA : In (ae a’ e’) A — HInA_c: In a’ (X[[Allc) *)

pose (In_config_ true a’ e’ A ¢ HInA He’) as HInA_c.

(*x HInA_c: In a’
c) *)

(X[[Alle) — In a’

(elems_union (X[[Al] ¢) (X[[A’]]

76

++

(*

(*
c)

*)

77

apply (set_union_introl string_eq_dec) with (y:= (X[[A’]]c)) in
HInA_c.

(* HInA_c — set_add string_eq_dec a’ (elems_union (X[[Al]l c) (X[L
A°]] ¢)) = elems_union (X[[Al] <) (X[[A°]]1 ¢) =)

apply (In_set_add string_eq_dec) in HInA_c. rewrite HInA_c. clear
HInA_c.

(* IHA’ : X[[velems_union A A’]] c =set= elems_union (X[[Allc) (X[[
A°11c)

X[[velems_union A A’]] c =set= elems_union (X[[Al] c¢) (X[[A’]1] ©
*)
apply IHA’; eauto.

(x case (E[[e’]] c) = false *)
apply IHA’; eauto.

case In (ae a’ e’) A *)
IHA’ : X[[velems_union A A’]] c =set= elems_union (X[[A]] c) (X[[A’]]
HnInA’ : In (ae a’ e’) A’

HnInElemA’ : InElem a’ A’

X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] <)
(X[[ae a’ e’ :: A’]] ©)

(x* Proof by cases of existsbElem a’ A *)

destruct (existsbElem a’ A) eqn:HexstElemA.

++

(* case existsbElem a’ A = true — InElem a’ A *)
existsbElem_InElem in HexstElemA. rename HexstElemA into HInElemA.
(* HnInA : In (ae a’ e’) A

HInElemA : InElem a’ A

X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] ¢)
(X[[ae a’> e’ :: A’]] ©)
*)
(* From velems_union Defn, HnInA A HInElemA —
velems_union A (ae a’ e’ :: A’) =vset= ae a’ (e’ V (F) extract_e a’
(velems_union A A’)):: velems_union (removeElem a’ A) A’]] c *)
apply (velems_union_nInA_InElemA) with (A:=A) in Ha’ as Hequiv;
try(split; assumption); try assumption.

unfold "=vset=" in Hequiv. rewrite Hequiv.

X[[ae a’ (e’ V (F) extract_e a’ (set_union velem_eq_dec A A’))

:: velems_union (removeElem a’ A) A’]] c

=set= elems_union (X[[Al] c¢) (X[[ae a’ e’ :: A’]1] c)

*)

simpl.

(x oo,

(if (EL[e’11 ¢) || (EL[extract_e a’ (set_union velem_eq_dec A A’)]]c)
then a’ :: X[[velems_union (removeElem a’ A) A’]] c

else X[[velems_union (removeElem a’ A) A’]] c) =set= elems_union
(X[[A]] ©) (if E[[e’]] c then a’ :: X[[A’]] c else X[[A’]] ©)
*)
(** Prove by cases (E[[e’]] c) *)
destruct (E[[e’]] c) egn:He’.
+++ (x (E[[e’]] c) = true *)

rewrite orb_true_1.

(* HnInElemA’ : InElem a’ A’

a’ :: X[[velems_union (removeElem a’ A) A’]] c

=set= elems_union (X[[Al] c¢) (a’ :: X[[A’]] ©)

*)
(* HnInElemA’ : InElem a’ A’ — elems_union (X[[Al]l c¢) (a’ :: X[[
A1 ©
=set= a’ :: elems_union (X[[removeElem a’ A]] c) (X[[A’]1] c) %)
rewrite (notInElemA’_set_union_cons_removeElem _ c Ha HNdpElemA’
HnInElemA’).

apply cons_equiv_elems.

(* IHA’: X[[velems_union A A’]] c =set= elems_union (X[[Al] c) (X[L
A1 ©

a’ :: X[[velems_union (removeElem a’ A) A’]] c

=set= a’ :: elems_union (X[[removeElem a’ A]] c) (X[[A°]] ©)
*)
apply IHA’; eauto.

+++ (x (E[[e’]] c) = false *)

rewrite orb_false_1.

(* HnInElemA’ : InElem a’ A’

79

(if E[[extract_e a’ (set_union velem_eq_dec A A’)]] ¢
then a’ :: X[[velems_union (removeElem a’ A) A’]] ¢
else X[[velems_union (removeElem a’ A) A’]] c) =set= elems_union
(X[L A1l o) (X[[A’ ©
*)

(* InElem a’ A’— E[[extract_e a’ (set_union velem_eq_dec A
A’)11c = E[[extract_e a’ Allc *)

rewrite notInElemA’_extract_set_union; try assumption.

apply InElem_extract in HInElemA as HInAexe; try assumption.
destruct HInAexe as [e [HInA Hexeqe] J].

(if E[[extract_e a’ Al]l ¢

then a’ :: X[[velems_union (removeElem a’ A) A’]] c

else X[[velems_union (removeElem a’ A) A’]] c) =set= elems_union
(X[L Al]l ©

(X[[A°17 ©

*)

(*¥* Prove by cases (E[[e’1] c) *)
destruct (E[[extract_e a’ A]] c) eqn: Hexta’.

++++ (x E[[extract_e a’ Allc = true *)

(* E[[extract_e a’ Allc = true — E[[ellc = true *)
rewrite Hexeqe in Hexta’. simpl in Hexta’.

rewrite orb_false_r in Hexta’.

(x E[[e]llc = true A In (ae a e) A — In a X[[Allc *)
apply In_config_true with (c:=c) in HInA; try assumption.

(* In a X[[Allc — elems_union (X[[Al]l c) (X[[A’]] c) =set=
(a’ :: elems_union (X[[removeElem a’ A]] c) (X[[A’]1] <)) *)
rewrite (In_set_union_removeElem _ c Ha HNdpElemA’ HInA
HnInElemA’).

apply cons_equiv_elems.

apply IHA’; eauto.
++++ (* E[[extract_e a’ A]llc = false *)
(* E[[extract_e a’ Al]lc = false — E[[e]llc = false *)

rewrite Hexeqe in Hexta’. simpl in Hexta’.

rewrite orb_false_r in Hexta’.

80

(* E[[ellc = false A In (ae a e) A — In a X[[[Al]c %)
apply In_config_false with (c:=c) in HInA; try assumption.

(* In a X[[Allc — elems_union (X[[Al]l c) (X[[A’]] c) =set=
elems_union (X[[removeElem a’ Al] c) (X[[A’]] c) %)
rewrite (notInElem_set_union_removeElem _ ¢ Ha HNdpElemA’ HInA

HnInElemA’).

apply IHA’; eauto.

++ (* case existsbElem a’ A = false — InElem a’ A *)
not_existsbElem_InElem in HexstElemA.

rename HexstElemA into HnInElemA.

(* HnInA : In (ae a’ e’) A

HnInElemA : InElem a’ A

X[[velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[Al] c) (X[[
ae a’

e’ :: A’]] ©

*)

(* HnInA A HnInElemA —

velems_union A (ae a’ e’ :: A’) =vset= ae a’ e’ :: velems_union A A’ *)

apply (velems_union_nInA_nInElemA) with (A:=A) in Ha’ as Hequiv;
try(split; assumption).
unfold "=vset=" in Hequiv. rewrite Hequiv.

(* HnInElemA’ : InElem a’ A’
HnInElemA : InElem a’ A
X[[ae a’ e’ :: velems_union A A’]] c =set= elems_union (X[[Al] c) (X[LL
ae a’ e’ :: A’]] ©)

*)

(* Goal — HnInElemA’ A HnInElemA A IHA’> *)

apply velems_union_nInElemA_nInElemB; eauto.

Qed.

A.2.4 Plain Set Intersection of Empty Set

(* Plain set intersection nil-r *)
Lemma elems_inter_nil_r: forall A, elems_inter A [] = [].

Proof. intro A. induction A; eauto. Qed.

(* Plain set intersection nil-1 %)
Lemma elems_inter_nil_l: forall A, elems_inter [] A = [].

Proof. eauto. Qed.

A.2.5 V-Set Intersection of Empty Set

(* V-set intersection nil-r *)

Lemma velems_inter_nil_r : forall A, velems_inter A [] .
Proof. intro A. induction A as [|(a, e)]. reflexivity.
rewrite velems_inter_equation. simpl.

assumption. Qed.

(* V-set intersection nil-1 *)
Lemma velems_inter_nil_1l : forall A, velems_inter [] A = [].
Proof. intros. rewrite velems_inter_equation. simpl. reflexivity. Qed.

A.2.6 V-Set Intersection Variation Preservation

Theorem velems_intersection_is_variation_preserving : forall A A’ c (HA: NoDupElem
A) (HA’: NoDupElem A’),
X[[velems_inter A A’]] c = elems_inter (X[[A]] c) (X[[A’1] ©).
Proof. intros. induction A as [la A TIHA].
- (% case A = [] *) simpl. reflexivity.
- (x case A = (a::A) *)
simpl. destruct a as (a, e).
(* get (InElemA a A) from NoDupElem (ae a e :: A) *)
inversion HA as [| a’’ e’’ A’’ HnInElemA HNdpElemA]; subst.
(* rewrite velems_inter equationx)
rewrite velems_inter_equation.
(x* Proof by cases of (E[[ellc) *)
destruct (E[[ellc) eqn:He.
{ (x case He: (E[[ellc) = true x)
simpl elems_inter.
(x* Proof by cases of (set_mem _ a (X[[A’]] <)) *)
destruct (set_mem string_eq_dec a (X[[A’]] c)) eqn: Hset_memaA’.
+ (* case (set_mem _ a (X[[A’]] c) = true *)
(* set_mem _ a (X[[A’]] ¢) = true — In a (X[[A’]] c) *)
apply (set_mem_correctl string_eq_dec) in Hset_memal’.
(* In a (X[[A’]] c) — Hget_annot: E[[get_annot a A’]] c = true *)
apply get_annot_true_In in Hset_memaA’ as Hget_annot.
(* In a (X[[A’]] ¢) — HInelemaA’: InElem a A’ *)
apply In_InElem_config in Hset_memaA’ as HInelemaA’.
(* InElem a A’ — existsbElem a A’ = true *)

81

rewrite < existsbElem_InElem in HInelemaA’. rewrite HInelemaA’.
(* simpl X[[_]lc. rewrite He Hget_annot IHA *)
simpl configVElemSet. rewrite He, Hget_annot, IHA. simpl.
reflexivity. assumption.
+ (x case (set_mem _ a (X[[A’]] c) <> true *)
_a (X[[A’]] ¢) <> true — In a (X[[A°1] c) %)
apply (set_mem_completel string_eq_dec) in Hset_memaA’.
(x In a (X[[A’]] ¢c) — Hget_annot: E[[get_annot a A’]] c = false *)

rewrite < get_annot_true_In in Hset_memaA’.

(* set_mem

(* rewrite <> true <> = false in Hset_memalA’ *)
rewrite not_true_iff_false in Hset_memaA’.
(** Proof by cases of existsbElem a A’ *)
destruct (existsbElem a A’).
++ (* existsbElem a A’ = true *)
(* simpl X[[_]lc. rewrite IHA Hset_memaA’ *)
simpl configVElemSet. rewrite IHA, Hset_memaA’.
rewrite andb_false_r. reflexivity. assumption.
++ (* existsbElem a A’ = false *) apply(IHA HNdpElemA).
}
{ (% case He: (E[[ellc) = true *)
(** Proof by cases of existsbElem a A’ %)
destruct (existsbElem a A’).
+ (* existsbElem a A’ = true *)
(* simpl X[[_]]lc. rewrite He IHA %)
simpl configVElemSet. rewrite He, IHA.
rewrite andb_false_l. reflexivity. assumption.
+ (* existsbElem a A’ = false *) apply(IHA HNdpElemA).

Qed.

A.2.7 Annotated V-Set Union Variation Preservation

Theorem avelems_union_vq_is_variation_preserving : forall Q Q’ c (HA: NoDupElem
(fst Q)) (HA’: NoDupElem (fst Q’)),
AX[[(vgtype_union_vq Q Q’)]]c =set= elems_union (AX[[QlJc) (AX[[Q’llc).
Proof.
intros Q Q’ c HQ HQ’.
destruct Q as (A, e). destruct Q’ as (A’, e’).
unfold vqtype_union_vq, configaVelems.
simpl fst. simpl snd. simpl.
destruct (E[[e]] c) eqn: He; simpl;
[| destruct (E[[e’]] c) eqn: He’; simpl;
[| (* [1 =set= [] *)simpl; reflexivity] J;
rewrite configVElemSet_dist_velems_union;

try (apply NoDupElem_push_annot; auto); simpl;

82

83

repeat (rewrite configVElemSet_push_annot); simpl;
rewrite He; [|lrewrite He’]; reflexivity.
Qed.

A.2.8 Annotated V-Set Intersection Variation Preservation

Theorem avelems_intersection_vq_is_variation_preserving : forall Q Q’ c (HQ:
NoDupElem (fst Q)) (HQ’: NoDupElem (fst Q’)),
AX[[avelems_inter_vq Q Q’]] c = elems_inter (AX[[QI] <) (AX[[Q’1] <).
Proof.
intros Q Q’ c HQ HQ’.
destruct Q as (A, e). destruct Q’ as (A’, e’).
unfold avelems_inter_vq. simpl. simpl in *.
destruct (E[[el] c) eqn: He;
destruct (E[[e’]] c) eqn: He’; simpl; try reflexivity.
+ apply velems_intersection_is_variation_preserving; auto.
+ rewrite elems_inter_nil_r. auto.
Qed.

Appendix B: Formal Encoding of Variational Query

B.1 RA Type System

Plain Query Type:

S|l = r(A)
S|l = maq
S| = ooq
Sll= a xq@=
Sll= qog
S|l=-¢e

Q—->S—-QT

A ifresS

{}, otherwise

AACS | = g

{}, otherwise
Sli=4q¢if(S[l=qll=10
{}, otherwise

(Sll=aq)u(S = a@) if(S=a)n(Sl= g)

{}, otherwise

Sll= @) f(S[l= a) = (S| =)

{}, otherwise

—— T —/

={}

Plain query type function is encoded as type_ in Coq.

x ----

| Type of plain query

*)

Fixpoint type_ (q:query) (s:schema) : qtype :=

match q with
| (rel (rm, A))
| (proj A q)

| (sel c @

=
=
if
=
if

if (existsb (relS_beq (rm, A)) s) then A else []
let A’ := type_ q s in

subset_qtype_bool A A’ then A else []

let A := type_ q s in

(condtype c A) then A else []

{}

84

| (setU op q1 q2) = if equiv_qtype_bool (type_ ql s) (type_ g2 s) then type_ qil
else []
| (prod ql g2) = if (is_disjoint_bool (type_ ql s) (type_ g2 s)) then
elems_union (type_ ql s) (type_ g2 s) else []
| (empty) = [
end.

Notation "s |l= q " := (type_ q s) (at level 49).

Plain Condition Type Check:

A= ®—>A—-B
All=1b =true
All= aek =true
All= ajeay =true
All= -6 =4l =0

All= 01V =(Afl=0)V(All= 02)
All= 0110 =(Afl= 0)N(A]l= 62)

All= 01, ifE[e]. = true
A H — 6<91,92>:
A || = 6, otherwise

Plain condition type check function is encoded as condtype in Coq.

conjC cl c¢2 = if (condtype c1l A) && (condtype c2 A) then true else false

(*
| Type check of plain condition
*)
Fixpoint condtype (c:cond) (A:elems) : bool :=
match ¢ with
| 1itCB b = true
| elemOpV 0 a n = true
| elemOpA o al a2 = true
| negC ¢ = if (condtype c A) then true else false
|
|

disjC cl c2 = if (condtype cl A) && (condtype c2 A) then true else false
end.
Notation "A ||- ¢ " := (condtype c A) (at level 49).

(* type’ *)

85

B.2 Formal Proof of Correctness of VRA Type System

Theorem variation_preservation : forall e S vq A’ e’,
{e,Sl=vg | (A’,) } —
forall c, E[[e]lc = true —
(SL[s1lc) |l= (QLL vgllc) =set= QTLL (A’, e’)1]c.
Proof.
intros e S vq A’’ e’’ H c HO.
induction H as [
|
e S HndpRS HndpAS
rn HeR A’ HndpA’ e’
HInVR
|
e S HndpRS HndpAS vq HndpvQ
e’ A’ HndpAA’ Q HndpQ
Hq IHHq Hsbsmp
|
e S HndpRS HndpAS
vq HndpvQ A HndpAA e’ vc
Hq IHHq HCond

I

e e’ S HndpRS HndpAS

vql HndpvQl vq2 HndpvQ2

A1l HndpAAl el A2 HndpAA2 e2
Hql IHHql Hq2 IHHQ2

|

e S HndpRS HndpAS

vql HndpvQ1l vq2 HndpvQ2

A1 HndpAAl el A2 HndpAA2 e2
Hql IHHql1 Hq2 IHHq2 HInter
|

e S HndpRS HndpAS

vql HndpvQ1l vq2 HndpvQ2

A1 HndpAAl el A2 HndpAA2 e2 op
Hql IHHql1 Hq2 IHHq2 HEquiv
1.

(k% EmptyRelation - E
*)

(x HO : (EL[el]l c) = true

|1= (QLL empty_vl] c) =set= QT[[([], 1itB false)]] c
*)
unfold configVQuery, configVQtype, configaVelems. simpl. reflexivity.

(kx Relation - E *)

(* HO : (EL[ell c) = true

1= QL[rel_v (rn, (A’, e’))1] c) =set= (QTL[(A’, e A (F) e’)1] ©)

*)
unfold configVQuery, configVQtype, configaVelems. simpl semE.
(x HO : (E[[ell ¢) = true

||= rel (RL[(xrn, (A’, e’))]] c) =set=
(if (EL[e]] c) && (EL[e’]] c¢) then X[[A’]] c else [1)

*)
(* (E[[el]l ¢) = true *)
rewrite HO. rewrite andb_true_l.
(* Proved by definitions InVR_In, configVRelS and ||= rel (rn, A) = Ax*)
rewrite type__configVRelS. apply InVR_In with (c:=c) in HInVR; try auto.
unfold configVRelS in HInVR. simpl in HInVR.
rewrite < existsb_In_relS in HInVR. destruct (E[[e’]]c).

rewrite HInVR. all: reflexivity.

(*x Project - E *)
(* Hq: {e, S I=vq | (A, e’)}
Hsbsmp: subset_vqtype (Q "~ e) (A’, e?)

I'1= (QCL proj_v Q vqll c) =set= (QTLL Q "~ e]]l)
*)
(* unfold ||=. AE = QT. Simplify IHHq with (E[[el]l c) = true. =)

simpl type_. rewrite AX_QT. unfold subset_qtype_bool. apply IHHq in HO as IHHq’.

clear IHHq.
(* Hq: {e, S I=vq | (A, e}
Hsbsmp: subset_vqtype (Q "~ e) (A’, e?)
IHHg’ : |l= (QL[vqll ¢) =set= (QTL[(A’, e’)1] ¢)

if subset_bool (QTL[QJ1 <) (Il= (QLL vqll ¢)) then
QTLL Q1] ¢ =set= (QTL[Q °~ el] ©)
*)
(* rewrite IHHq’ in goal *)
rewrite (equiv_subset_bool _ IHHq’).
(* Hq: {e, S I=vgq | (A’, e’)}
Hsbsmp: subset_vqgtype (Q "~ e) (A’, e’)

if subset_bool (QTL[QJ] <) (QTLL[(A’, e’)]1] c) then
QTLL Q11 ¢ =set= (QTLL Q "~ ell ©)
*)
(* By defintion, subset_vqtype A B = subset QT[[A]] QTL[BI] %)
unfold subset_vqtype in Hsbsmp. specialize Hsbsmp with c.

87

(* Hq: {e, S I=vg | (A, e”)}
Hsbsmp : subset (QTLL Q "~ ell ¢) (QTLL (A’, e’)1] ¢)

if subset_bool (QTL[Q1] <) (QTLL (A’, e’)]1] c) then
QTLL Q1] ¢ =set= (QTL[Q ~~ el] ©)

*)
(x (EL[ell) = true — (QTLL Q ~~ e]l] o = QTLL Q11) %)
rewrite (addannot_config_true _ HO) in Hsbsmp. rewrite (addannot_config_true
_ _ _ HO).
(* Hq: {e, S |=vq | (A’, e’)}

Hsbsmp : subset (QTLL Q11 c) (QTLL (A’, e’)1] <

if subset_bool (QTL[QJ] <) (QTL[(A’, e’)]1] c) then
QTLL Q11 ¢ =set= (QTLL Q11 <)
*)
(* Proved by subset A B <> subset_bool A B = true *)
rewrite <— subset_bool_correct in Hsbsmp. rewrite Hsbsmp.

reflexivity.

(*x Select - E *)
- apply IHHq in HO as Htype_.

simpl configVQuery.
simpl type_.

(* HCond : {e, (A, e’) |- vc}
Htype_ : |l= (QL[vqll ¢) =set= (QTLL (4, e’)]] ¢

(if (QTLL (A,)11 e |- (CLL vell ©
then ||= (QL[vqll c) else [1) =set= (QTL[(A, e’)1] <)
*)
(x {e, (A, e’) |- ver — (QTLL (A, e’)1]1 c) |- (CLL vell ¢) = true *)

apply variation_preservation_cond with (c:=c) in HCond.

(* HCond : (QTLL (A, e’)11 <) |l- (CL[vcl] c) = true
Htype_ : |l= (QL[vqll c) =set= (QTL[(4, e’)1] <)

(if (Il1= QL[vqll ©)) 1= (CLl vell <)
then ||= (QL[vqll c) else [1) =set= (QTL[(A, e’)1]1 <
*)

(* v-condition (C[[vcl] c) is well formed in all equivalent contexts:
Htype_: 1= QL[vqll c) =set= (QTL[(A, e’)1] c) —
HCond_: |I= (QLL[vgll ¢) |I- (CLL vell ¢) = (QTLL (A,)11 ¢) |I- (CLL
vell c) x)

88

apply condtype_equiv with (c:=(C[[vcl] ¢)) in Htype_ as HCond_.

(* HCond : (QTLL (A, e’)1]1 c) II- (CLL[vecl]l ¢) = true
Htype_ : |l= (QL[vql]l ¢) =set= (QTLL (A4, e’)]])
HCond_ : (ll= (QL[vqll <)) Il1- (CLL vell e) = (QTLL (4,)11 <) |I- (CLL
vell <)

(if (I'l= QL[vqll <)) |- (CLL vell ©
then ||= (QLL vqll c) else [1) =set= (QTL[(4, e’)1] <)
*)

rewrite HCond_, HCond. assumption. auto.

(kx Choice - E *)

(x Hql : {e A(F) e’, S |=vql | (A1, el)}
Hg2 : {fe A(F) (F) e’, S |=vqg2 | (A2, e2)}
HO : (E[[el] c) = true

IHHql : (E[[e A (F) e’]] ¢) = true — |l= (QL[vq1l] c) =set= (QTL[(A1,
e1] ¢

IHHq2 : (E[[e A (F) (F) e’]1]1 ¢) = true — |I= (QL[vg2]] c) =set= (QTL[(A2,
e2)11 ©

[1= (QLL chcQ e’ vql vg2]] c) =set= (QT[[vqtype_union_vq (A1, el) (A2, e2)]]
c)

*)

(* Hql Hq2: contex_typeannot_rel — {e, _ |I=_ | (_, e)} — (e — e’) x)
apply context_type_rel in Hql. rewrite not_sat_not_prop, < sat_taut_comp_inv
in Hql.
apply context_type_rel in Hq2. rewrite not_sat_not_prop, < sat_taut_comp_inv
in Hq2.
specialize Hql with c. specialize Hq2 with c.

(* remove e from Hypotheses with (E[[el] c) = true *)
simpl semE in *. rewrite HO in *. rewrite andb_true_l in *. Search negb.
rewrite negb_false_iff in Hq2. rewrite negb_true_iff in IHHqQ2.

(x Hql : (E[[e’]] c) = false — (E[[el]] c) = false
Hq2 : (E[[e’]] — (E[[e2]] c) = false
IHHql :(E[[e’]] ¢) = true — |l= (QL[vq1l]l c) =set= (QTL[(A1, e1)]1] ¢)
IHHg2 :(E[[e’]] ¢) = false — |Il= (QL[vq2]] c) =set= (QTL[(A2, e2)]] c)

(2]
~
1]

true

1= (QLL cheQ e’ vql vq2]] c) =set= (QT[[vqtype_union_vq (A1, el) (A2, e2)]]
c)
*)
(x (QL[cheQ e’ vql vq2]] c) — (if E[[e’]] c then QL[vq1l]l c else QL[vq2]]
c) *)
simpl configVQuery.
(* (QTL[vqtype_union_vq A B]] c¢) =set= elems_union (QT[[A]] ¢) (QTL[BI] c) *)

89

(*

(*

(*

*)

(*

*)

(*

*)

rewrite configVQType_dist_vqtype_union_vq; try assumption.

repeat (rewrite configVQType_push_annot).

(ELL e’11 ¢) = true —

(E[[e2]] c) = false — elems_union (QTL[(A1, e1)]] c) (QTL[(A2, e2)]1] c) =
QTLL (A1, e1)]]) =)

assert(Hql’: (E[[e’]] c¢) = true — elems_union (QT[[(A1, e1)]] <) (QTL[(A2,
e2)]1] c) = (QTLL (A1, e1)]] c)).

intro. apply Hq2 in H. simpl. rewrite H. eauto.

(ELL e’11 ¢) = false —

(E[[e1]1] c) = false — elems_union (QTL[(A1, e1)]] c) (QTL[(A2, e2)]1] c) =
QTLL (A2, e2)1] <) =)

assert(Hq2’: (E[[e’]] c¢) = false — elems_union (QT[[(A1, e1)]] ¢) (QTLL
(A2, e2)11 c) =set= (QTL[(A2, e2)]1] <)).

intro. apply Hql in H. simpl. rewrite H. rewrite elems_union_nil_1.
reflexivity.

destruct (E[[e2]] ¢); [apply NoDupElem_NoDup_config | apply NoDup_nill];

auto.
IHHql :(E[[e’]] c) = true — ||= (QL[vq1l]l c) =set= (QTL[(A1, e1)]] ¢)
IHHq2 :(E[[e’]] c) = false — |l|= (QL[vq2]] c) =set= (QTL[(A2, e2)]] ¢)

Hql’ : (E[[e’]] ¢) = true —
elems_union (QT[[(A1, e1)]] <) (QTLL (A2, e2)]1] ¢) = (QTL[(A1, e1)1] <)
Hq2’ : (E[[e’]] c) = false —
elems_union (QTL[[(A1, e1)]] c) (QTLL (A2, e2)]] c¢) =set= (QTL[(A2, e2)]]
c)

1= (if E[[e’]] c then QL[vq1l] c else QL[vq2]] c) =set= elems_union (QT[[
(A1, e1)1]) QTLL (A2, e2)1] <)

destruct (E[[e’]] c) eqn: He’.

He’ :(ELL e’1] ¢) = true

IHHql :|l= (QL[vq1ll c¢) =set= (QTL[(A1, e1)1] <)

Hql’ :elems_union (QT[[(A1, e1)]] <) (QTLL[(A2, e2)]] c) = (QTL[(A1, e1)]]
c)

[1= (QL[vq1l]l c) =set= elems_union (QT[[(A1, e1)]] c) (QTL[(A2, e2)]] c)

rewrite Hql’; try reflexivity. apply IHHql; try reflexivity.

He’ :(E[[e’1] c) = false

IHHq2 : |l= (QLL[vq2]] c) =set= (QTL[(A2, e2)]1] c)

Hq2’ : elems_union (QT[[(A1, e1)]] c¢) (QTLL (A2, e2)]] c) =set= (QTL[(A2,
e2)1] ¢

1= (Q[[vq1]]l c) =set= elems_union (QT[[(A1, e1)]] c) (QTL[(A2, e2)]] ¢)

rewrite Hq2’; try reflexivity. apply IHHq2; try reflexivity.

(€1 Product - E *)
(* HInter : velems_inter Al A2 =vset= []
HO : (E[L[el] c) = true
IHHq1 : (E[[el]l ¢) = true — |I= (QL[vq1l]l c¢) =set= (QTL[(A1, e1)]] ©)
IHHq2 : (E[[ell c) = true — |I|= (QL[vq2]] c) =set= (QTL[(A2, e2)1] ¢)

[1= (QLL prod_v vql vg2]] c) =set= (QT[[vqtype_union_vq (A1, el) (A2, e2)]] c)
*)
(x apply E[[el] c¢) = true in Inductive H x)
apply IHHq2 in HO as IHHq2’. apply IHHql in HO as IHHql’.
clear IHHql. clear IHHQ2.
(* (QTL[vqtype_union_vq A B]] c¢) =set= elems_union (QT[[A]] c¢) (QTL[BI] c) *)
rewrite configVQType_dist_vqtype_union_vq; try assumption.
repeat (rewrite configVQType_push_annot).
G+ Il= QL[prod_v vql vg2]] c) |l= prod (QL[vq1ll c) (QLL vq2]] <) *)
simpl configVQuery.
(*

1= prod (QL[vq1ll ¢) (QL[vg2]] c) =set= elems_union (QT[[(A1, e1)]] ¢)
(QTLL (A2, e2)]1] <)

*)
simpl type_.

(* HInter : velems_inter Al A2 =vset= []

if is_disjoint_bool (||= (QL[vq1ll ¢)) (ll= QL[vq2]] <))
elems_union (||= (QL[vq1l]l ¢)) (ll= (QLL vq2]] c)) =set= elems_union (QTL[[
(A1, e1)]] <) (QTLL (A2, e2)1] <
*)

(* velems_inter Al A2 =vset= [] — elems_inter [[A1]l]lc [[A2]]c =set= [] *)
unfold equiv_velems in HInter. unfold vqtype_inter_vq, " =vqtype=", "=avset="
in
HInter.
specialize HInter with c. simpl in HInter.
rewrite configVElemSet_dist_velems_inter in HInter; try assumption.
assert (HInter’: elems_inter (QT[[(A1, e1)]] <) (QTL[(A2, e2)]] c) =set= []
).
simpl. destruct (E[[e1]] c¢); [destruct (E[[e2]] c); [assumption |
rewrite elems_inter_nil_r; reflexivity] | rewrite elems_inter_nil_1;
reflexivity J.

(* HInter’ : elems_inter (QTL[(A1, e1)]] c) (QTLL[(A2, e2)]] c) =set= []

if is_disjoint_bool (||= (QL[vq1ll <)) (ll= QL[vq2]] <))
elems_union (||= (QL[vq1ll <)) (1= (QLL vq2]] c)) =set= elems_union (QT[[

91

92

(A1, e1)]] <) (QTLL (A2, e2)1] <
*)

(* is_disjoint_bool A B = true — elems_inter A B = [] %)
rewrite (is_disjoint_bool_equiv) with (B := (QT[[(A1, e1)]lc)) (B’:= (QTLL[(A2,
e2)]] c)); try assumption.
apply nil_equiv_eq in HInter’. rewrite < is_disjoint_bool_correct in HInter’.
rewrite HInter’.

(* THHq1’ : |l= (QL[vqlll c) =set= (QTL[(A1, e1)]] ¢)
IHHq2’ : |l= (QLL vg2]] c) =set= (QTL[(A2, e2)]] c)

elems_union (||= (QL[vq1ll ¢)) (Il= (QL[vq2]] c)) =set= elems_union (QT[[
(A1, e1)]] c) (QTLL (A2, e2)]1] <)
*)
(* Proved by set_union_quiv %)
rewrite (set_union_equiv) with (B := (QT[[(A1, e1)]1lc)) (B’:= (QTLL[(A2,
e2)]11c)); try (eauto; reflexivity).
(* NoDup assumptions *)
1, 2, 5, 6: try(apply (NoDup_equiv_elems IHHq1’)); try(apply
(NoDup_equiv_elems IHHq2’)).

1, 3, 5,7 : simpl; destruct (E[[e1l] ¢).
9, 10, 11, 12: simpl; destruct (E[[e2]] ¢).
all: try(apply NoDupElem_NoDup_config; auto); try (apply NoDup_nil).

(** SetOp - E *)
(* HEquiv : (A1, el) =vqtype= (A2, e2)
HO : (EL[el] c) = true
IHHql : (E[[el] c) = true — |I|= (QL[vqll]l c) =set= (QTL[(A1, e1)]1] <)
IHHq2 : (E[[e]] c) = true — |I|= (QL[vg2]] c) =set= (QTL[(A2, e2)]] ¢)

1= (QLL setU_v op vql vq2]] c) =set= (QTL[(A1, e1)1] <)
*)
(* apply E[[e]] c) = true in Inductive H %)
apply IHHgq2 in HO as IHHq2’. apply IHHql in HO as IHHql’.
clear IHHql. clear IHHQ2.

G+ I1= (QL[setU_v vql vg2]] c) |I= prod (QLL vq1ll c) (QLL vq2]1] c) *)
simpl configVQuery.

(x IHHq1’ : |I= (QL[vqill c) =set= (QTL[(A1, e1)]] c)
IHHg2’ : |l= (QL[vg2]] c) =set= (QT[[(A2, e2)]])

| 1= setU op (QL[vq1ll <) (QL[vq2]] c) =set= (QTL[(A1, e1)]] c)
*)

simpl type_.
(* HEquiv : (A1, el) =vqtype= (A2, e2)

93

if equiv_gtype_bool (ll= (QL[vq1ll <)) (1= (QLL vq21] <))
then ||= (QL[vq1ll c¢) =set= (QTL[(A1, e1)1] <)

*)
(* (A1, el) =vqtype= (A2, e2) — (QTL[(A1, e1)]] c) =set= (QTL[(A2, e2)]] c)
*)
apply configVQtype_equiv with (c:=c) in HEquiv. rewrite < IHHql’, < IHHq2’ in
HEquiv.
(* Proved by A =set= B — equiv_qgtype_bool A B = true *)

rewrite < equiv_qtype_bool_correct in HEquiv. rewrite HEquiv. assumption.

Qed.

94

Appendix C: Formal Encoding of Implicitly Annotated Variational
Query

C.1 Implicit VRA Type System

(k ———- B et

| Type of (Implicit |-) variational query

*)
Inductive vtypelmp :fexp — vschema — vquery — vqtype — Prop :=
(* -- EMPTYRELATION-E -- %)
| EmptyRelation_vE_imp : forall e S {HndpRS:NoDupRn (fst S)}
{HndpAS: NODupElemRs S},
vtypeImp e S (empty_v) ([], 1litB false)
(* -- RELATION-E -- %)
| Relation_vE_imp : forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
rn {Hrn: empRelInempS rn} A_ A’ {HndpA’: NoDupElem
A} e_ e,
InVR (rn, (A’, e’)) S —
sat (e A (F) e’) —
vtypeImp e S (rel_v (rn, (A_, e.))) (A, (e A (F) e”))
(* -- PROJECT-E -- %)
| Project_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vq {HndpvQ: NoDupElemvQ vq} e’ A’
{HndpAA’: NoDupElem A’} Q {HndpQ: NoDupElem (fst
D,
vtypelmp e S vq (A’, e’) —
subsump_vqtype Q (A’, e’) —
vtypeImp e S (proj_v Q vq) (vqtype_inter_vq Q (A’, e’))
(* -- SELECT-E -- %)
| Select_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vq {HndpvQ: NoDupElemvQ vqg}
A {HndpAA: NoDupElem A} e’ vc,
vtypeIlmp e S vq (A, e’) —
{e, (4,) |-vc} —
vtypeImp e S (sel_v vc vq) (A4, e’)
(* -- CHOICE-E -- %)
| Choice_vE_imp: forall e e’ S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vql {HndpvQ1l: NoDupElemvQ vql} vq2 {HndpvQ2:
NoDupElemvQ vqg2}

A1 {HndpAA1l: NoDupElem A1} el A2 {HndpAA2: NoDupElem

A2} e2,
vtypeImp (e A (F) e’) S vql (A1, el) —
vtypeImp (e A (F) ((F) e’)) S vq2 (A2, e2) —
vtypeImp e S (chcQ e’ vql vqg2)
(vqtype_union_vq (A1, el) (A2, e2))
(* -- PRODUCT-E -- x)
| Product_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}
vql {HndpvQl: NoDupElemvQ vqi} vq2 {HndpvQ2:
NoDupElemvQ vqg2}
A1 {HndpAAl: NoDupElem A1} el A2 {HndpAA2: NoDupElem
A2} e2 ,
vtypeImp e S vql (A1, el) —
vtypeImp e S vq2 (A2, e2) —
vqtype_inter_vq (A1, el) (A2, e2) =vqtype= (nil, 1litB false) —
vtypeImp e S (prod_v vql vq2) (vqtype_union_vq (A1, el) (A2, e2))
(* -- SETOP-E -- %)
| SetOp_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vql {HndpvQ1l: NoDupElemvQ vql} vq2 {HndpvQ2: NoDupElemvQ
q P p q q: P p

vq2}

A1 {HndpAA1: NoDupElem A1} el A2 {HndpAA2: NoDupElem A2}

e2 op,
vtypeImp e S vql (A1, el) —
vtypelmp e S vq2 (A2, e2) —
equiv_vqtype (A1, el) (A2, e2) —
vtypeImp e S (setU_v op vql vq2) (A1, el).

Notation "{ e , S |- vq | vt }" := (vtypeImp e S vq vt) (e at level 200).

C.2 Correctness of Implicit VRA Type System

95

C.2.1 Correctness of Explicitly Annotating Function w.r.t. Implicit

VRA type System

Lemma ImpQ_ImpType_ExpQ_ImpType e S q A:

{e,S81- q | A} —

exists A, { e, S |- [qlS | A } A A =vqtype= A’.
Proof. intro HImpQ.
(* From Lemma in Appendix C.2.3 *)
apply ImpQ_ImpType_implies_ExpQ_ImpType in HImpQ as HExpQ.
destruct HExpQ as [A’ HExpQ].
(* From Lemma in Appendix C.2.4 %)

apply (ImpQ_ImpType_Equiv_ExpQ_ImpType HImpQ) in HExpQ as HEquiv.

96

exists A’. eauto.
Qed.

C.2.2 Correctness of Implicit VRA Type System For Explicitly An-
notated V-query

Lemma ExpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):
{e,sl- [qdds 1A} —
exists A, { e, S |=1[qlS | A } A A =vqtype= A’.

Proof. intro HImp.

(* From Lemma in Appendix C.2.5 %)

apply ExpQ_ImpType_implies_ExpQ_ExpType in HImp as HExp;

try assumption.

destruct HExp as [A’ HExp].

(* From Lemma in Appendix C.2.6 *)

apply (ExpQ_ImpType_Equiv_ExpQ_ExpType HndpQ HImp) in HExp as HEquiv.

exists A’. eauto.

Qed.

C.2.3 ImpQuery ImpType implies ExpQuery ImpType

Lemma ImpQ_ImpType_implies_ExpQ_ImpType e S q A:
{e,Sl-ql A} —
exists A’, { e, S |- [qlS | A” }.
Proof.
generalize dependent A.
generalize dependent e.
induction q; destruct A as (A, ea);

intros HImp.
{ (x Relation - E *)

destruct v as (rn, (A_, e.)).

simpl in HImp. simpl.

inversion HImp as [| eInv SInv HndpRSInv HndpASInv rnInv HeRInv A_Inv
A’Inv HndpA’Inv e_Inv e’Inv
HInVRInv | | | | |]; subst.

rename e’Inv into e’.

apply InVR_findVR in HInVRInv as HInFindInv; try assumption.

rewrite HInFindInv.

97

unfold getvs, getf. simpl.
exists ((A, e A (F) e’)).

apply Relation_vE_imp; try assumption.

{ (* Projection - E *)
simpl in HImp. simpl.

destruct (vtypeImpNOTC (1itB true) S ([q] S)) as (Ags, egs) eqn:HgST.
destruct a as (Ap, ep).
inversion HImp as [| |
eInv SInv HndpRSInv HndpASInv vqInv HndpvQInv
e’Inv A’Inv HndpAA’Inv QInv HndpQInv

HqInv HsbsmpInv | | | |]; subst.

apply IHq in Hqlnv as Hgs. destruct Hgs as [(Agse, eqse) Hgs].
apply vtypeImpNOTC_correct in Hgs as HqSTine; try assumption.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.
apply eq_equiv_vqtype in HqST. (*as HqSTeqv.*)

apply (contex_intro_NOTC (1itB true))
with (e’:=e) (eq’:= (egs A (F) e)) in HqgST; try assumption; try reflexivity.

assert (Htrue_e: (1itB true A (F) e) =e= e).
{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.

rewrite HqST in Htrue_e.

rewrite HqSTine in Htrue_e.

exists (vqtype_inter_vq (vqtype_inter_vq (Ap, ep) (Ags, egs)) (Agse, egse)).
apply Project_vE_imp; try assumption.

all: apply NoDupElem_vtypeImp in Hqs as HndpAgse; try assumption;
apply NoDupElemvQ_ImptoExp with (S:=S) in HndpvQInv; try assumption;

auto.

{ unfold vqtype_inter_vq. simpl. simpl in *.

98

apply NoDupElem_velems_inter; assumption. }

{ (* Selection - E *)
simpl in HImp. simpl.

destruct (vtypeImpNOTC (1itB true) S ([q]l S)) as (Ags, eqs) eqn:HqST.

inversion HImp as [| | |
eInv SInv HndpRSInv HndpASInv vqInv HndpvQInv
A’Inv HndpAA’Inv e’Inv vcInv
HqInv HcondInv | | |]; subst.

apply IHq in Hqlnv as Hgs. destruct Hgs as [(Agse, egse) Hgs].
apply vtypeImpNOTC_correct in Hgs as HqSTine; try assumption.

exists ((Agse, egse)).
apply Select_vE_imp; try assumption.

all: apply NoDupElem_vtypelmp in Hqs as HndpAgse; try assumption;
apply NoDupElemvQ_ImptoExp with (S:=S) in HndpvQInv; try assumption.

pose (ImpQ_ImpType_Equiv_ExpQ_ImpType HqInv Hgs) as HgeqvgS.

apply vcondtype_equiv with (e:=e) (vc:=v) in HqeqvqS; auto.
}

4:{ (* Empty - E *)

inversion HImp; subst.

simpl. exists (nil, 1itB false).
assumption.

}

all: (x Choice- E / Porduct - E / SetOP -E *)
inversion HImp as [| | |
|
eIlnv e’Inv SInv HndpRSInv HndpASInv
vqlInv HndpvQ1Inv vq2Inv HndpvQ2Inv
A1Inv HndpAAlInv elInv A2Inv HndpAA2Inv e2Inv
HqlInv Hq2Inv
I
eInv SInv HndpRSInv HndpASInv
vqlInv HndpvQ1Inv vq2Inv HndpvQ2Inv
Al1Inv HndpAAlInv ellnv A2Inv HndpAA2Inv e2Inv
HqlInv Hq2Inv HInterInv
|

eInv SInv HndpRSInv HndpASInv

vqlInv HndpvQ1Inv vq2Inv HndpvQ2Inv

A1Inv HndpAAlInv elInv A2Inv HndpAA2Inv e2Inv opInv
HqlInv Hq2Inv HEquivInv]; subst;

apply IHql in HqlInv as HqlS; apply IHq2 in Hq2Inv as Hq2S;
destruct HqlS as [(Al, el) HqlS];
destruct Hq2S as [(A2, e2) Hq2S];
apply NoDupElem_vtypeImp in HqlS as HndpAl; try assumption;
apply NoDupElem_vtypeImp in Hq2S as HndpA2; try assumption;
try (apply NoDupElemvQ_ImptoExp; assumption);
simpl;
try(exists (vqtype_union_vq (A1, el) (A2, e2));
apply Choice_vE_imp with (A2:=A2) (e2:=e2)
)5
try(exists (vqtype_union_vq (A1, el) (A2, e2));
apply Product_vE_imp with (A2:=A2) (e2:=e2)
);
try(exists (A1, el);
apply SetOp_vE_imp with (A2:=A42) (e2:=e2)
)5
try assumption;
try (apply NoDupElemvQ_ImptoExp; assumption);
pose (ImpQ_ImpType_Equiv_ExpQ_ImpType HqlInv HqlS) as HqleqvqlS;
pose (ImpQ_ImpType_Equiv_ExpQ_ImpType Hq2Inv Hq2S) as Hq2eqvqg2S.

{ (* Product_vE_imp — velems_inter_vq (A1, el) (A2, e2) =vqtype= [] *)
pose (vqtype_inter_vq_equiv) as HInterEqv.
apply HInterEqv with (A:=(A1Inv, ellInv)) (A’:=(A1l, el)) in Hq2eqvq2S as
HInterEqv’;
try (simpl; assumption).
clear HInterEqv. rename HInterEqv’ into HInterEqv.

rewrite HInterInv in HInterEqv. symmetry. assumption.

{ (* SetOp_vE_imp — (A1, el) =vqtype= (A2, e2) *)
symmetry in HqleqvqilS.
transitivity (A, ea); try assumption.

transitivity (A2Inv, e2Inv); try assumption.

Qed.

99

C.2.4 ImpQuery ImpType Equiv ExpQuery ImpType

Lemma ImpQ_ImpType_Equiv_ExpQ_ImpType e S q A A’:
{e,S81- q | A} —
{e,sl-[ds 1A} —
A =vqtype= A’.

Proof.

generalize dependent A’. generalize dependent A. generalize dependent e.

induction q; destruct A as (A, ea); destruct A’ as (A’, ea’); intros HImp HExp.

{ (* Relation - E %)

inversion HImp; subst. simpl ImptoExp in HExp.

apply InVR_findVR in H3 as HInFind. rewrite HInFind in HExp.
unfold getvs in HExp. unfold getf in HExp.

simpl in HExp. inversion HExp; subst.

apply InVR_findVR in H2 as HInFind’. rewrite HInFind in HInFind’.

inversion HInFind’; subst. reflexivity. all: assumption.

}
{ (* Projection - E %)

simpl in HImp.
simpl in HExp.

destruct (vtypeImpNOTC (1itB true) S ([q] S)) as (Ags, eqgs) eqn:HgST.

destruct a as (Ap, ep).

inversion HImp as [| |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
e’Imp A’Imp HndpAA’Imp QImp HndpQImp
HqImp HsbsmpImp | | | |]; subst.

inversion HExp as [| |
eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp
e’Exp A’Exp HndpAA’Exp QExp HndpQExp
HqExp HsbsmpExp| | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.

100

101

apply eq_equiv_vqtype in HqST.

apply (contex_intro_NOTC (1itB true))
with (e’:=e) (eq’:= (egs A (F) e)) in HqST; try assumption; try reflexivity.

apply vtypeImpNOTC_correct in HqExp as HqSTine; try assumption.
apply IHq with (A:=(A’Imp, e’Imp)) in HqExp as Hqe; try assumption.
apply eq_equiv_vqtype in HqSTine.

(* equivalent context intro *)
assert(Htrue_e: (1itB true A (F) e) =e= e).
{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.
rewrite HqST in Htrue_e. rewrite HqSTine in Htrue_e.

apply vqtype_inter_vq_equiv_Imp_Exp with (Ap:=Ap) (ep:=ep) (A’Imp:=A’Imp)
(e’Imp:=e’Imp)
in Htrue_e as Hvqtype_inter; try (simpl; assumption).

}

{ (* Selection - E *)
simpl in HImp.
simpl in HExp.

destruct (vtypeImpNOTC (1itB true) S ([ql S)) as (Ags, eqs) eqn:HgST.

inversion HImp as [| | |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
A’Imp HndpAA’Imp e’Imp vcImp
HqImp HcondImp | | |]; subst.

inversion HExp as [| | |
eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp
A’Exp HndpAA’Exp e’Exp vcExp
HqExp HcondExp | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HQST as HndpelemAqgs; try assumption.

apply IHq with (A’:=(A’, ea’)) in Hqlmp; assumption.
¥

4:{ (* Empty - E *)
inversion HImp; subst. simpl ImptoExp in HExp.

inversion HExp; subst. reflexivity.

all: inversion HImp as

[

I 1 | e0 £0 SO HnS HnAS

q10 HnQ1 q20 HnQ2

Al HnAl el A2 HnA2 e2
Hql Hq2

e0 SO HnS HnAS

q10 HnQ1 920 HnQ2

A1 HnAl el A2 HnA2 e2
Hql Hq2

e0 SO HnSO HnASO

q10 HnQ10 920 HnQ20

Al HnAl el A2 HnA2 e2 op
Hql Hq2 HEquiv]; subst;

simpl in HExp; inversion HExp as

L1

e0 fO SO HnSs HnASs

q10 HnQls 920 HnQ2s

Als HnAls els A2s HnA2s e2s
Hqls Hqg2s

e0 SO HnSs HnASs

q10 HnQls 920 HnQ2s

Als HnAls els A2s HnA2s e2s
Hqls Hqg2s

e0 SO HnSs HnASs

ql10 HnQls q20 HnQ2s

Als HnAls els A2s HnA2s e2s ops
Hqls Hqg2s HEquivs]; subst.

1, 2: apply IHql with (A’:=(Als, els)) in Hql;

apply IHq2 with (A’:=(A2s, e2s)) in Hqg2;

try (assumption);

apply vqtype_union_vq_equiv with (A:=(A1, el)) (A’:=(Als, els)) in Hq2;

assumption.
apply IHql with (A’:=(A’, ea’)) in Hql; assumption.

Qed.

C.2.5 ExpQuery ImpType implies ExpQuery ExpType

Lemma ExpQ_ImpType_implies_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):
{e,sl-[qds A} —

102

103

exists A’, { e, S |= [q]lS | A’ }.
Proof.
generalize dependent A.
generalize dependent e.
induction q; destruct A as (A, ea);

intros HImp.

{ (* Relation - E %)
destruct v as (rn, (A_, e_.)).

simpl in HImp.

destruct (findVR rn S) as (rn_, (Ar, er)) egn: HfindVR.

unfold getvs, getf in HImp. simpl in HImp.

inversion HImp as [| eImp’ SImp’ HndpRSImp’ HndpASImp’
rnImp’ HeRImp’ A_Imp’ A’Imp’ HndpA’Imp’ e_Imp’ e’Imp’
HInVRImp |
I 11 1]; subst.

apply InVR_findVR in HInVRImp

as HInFindImp; try assumption.

rewrite HfindVR in HInFindImp.

inversion HInFindImp; subst.
simpl. rewrite HfindVR.

unfold getvs, getf. simpl.

exists (A, (e A (F) e’Imp’)).
apply Relation_vE; try assumption.

{ (* Projection - E %)
rename a into Q.

(*

HImp: {e, S |- [proj_v Q ql S | (4, ea)}

exists A’ : vqtype, {e, S |= [proj_v Q q] S | A’}

Proof sketch:

HImp: {e, S |- [proj_v Q ql S | (4, ea)}

S1. simpl ([] S) (in HImp and Goal) with
1. vtypeImpNOTC (1itB true) S ([q]l S) := (Ags, egqs) -- HgST
:= { 1itB true, S |- ([q] S) | (Ags, egs) }

2. Q/-\Qs = (vqtype_inter_vq Q (Ags, eqs))

HImp: {e, S |- proj_v (Q/-\Qs) ([ql S) | (A, ea)}

exists A’ : vqtype, {e, S |= proj_v (Q/-\Q@s) [q] S | A’}
*)

simpl in HImp. simpl.

destruct (vtypeImpNOTC (1itB true) S ([q]l S)) as (Ags, eqs) eqn:HqST.

remember (vqtype_inter_vq Q (Ags, egs)) as QiQs.

(*

S2. inversion HImp to get (A, ea)

3. {e, S |- ([q] S) | (Agse, egse)} - HqImp

4. Q/-\Qs/-\Qse := vqtype_inter_vq (P/-\Qt) (Agse, egse)

HImp: {e, S |- proj_v (Q/-\Qs) ([q]l S) | Q/-\@s/-\@se }

*)

inversion HImp as [| |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
e’Imp A’Imp HndpAA’Imp QImp HndpQImp
HqImp HsbsmpImp | | | |]; subst.

(xS1.1 *) apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAgs; try
assumption.

rename e’Imp into egse.

rename A’Imp into Agse.

remember (vqtype_inter_vq Q (Ags, egs)) as QiQs.

remember (velems_inter (fst QiQs) Agse) as QiQsiQseA.

remember (snd QiQs A (F) eqgse) as QiQsiQsee.

(*

S3. relate 1-HqST 3-HqImp with context intro (litB true — 1itB true A e — e *
3Hgst:{ 1itB true, S |- ([q]l 8) | (Ags, egs) } —

S3.1 { 1itB true A e, S |- ([q] S) | (Ags, egsAe) } —

s3.2 { e, S |- ([q]l 8) | (Ags, egqsAe) } —

$3.3 from 3:{ e, S |- ([q] S) | (Agse, egse) } and S3.2
4.1: HgsA: Agse =vqtype= Ags
4.2: Hgse: eqse =e= eqs N e

104

105

3: { e, S |- ([q] S) | (Ags, egse) } -- Hqlmp *)

(*¥S3.1 intro e in context: 1litB true — 1itB true A e *)
apply eq_equiv_vqtype in HQST.

apply (contex_intro_NOTC (1itB true))
with (e’:=e) (eq’:= (egs A (F) e)) in HqgST; try assumption; try reflexivity.

(%83.2%)
(* 1itB true A e =e= e *) assert(HgqsAe: (1itB true A (F) e) =e= e).
{ unfold equivE. simpl. reflexivity. }

(*x contex equiv implies type euiv — *)

apply (contex_equiv_NOTC) with (S:=8) (q:=[q] S) in HgsAe; try assumption.

(* inductive type to type function - ([q] S) in e %)
apply vtypeImpNOTC_correct in HqImp as HqImpTine; try assumption.

rewrite HqST in HgsAe.

rewrite HqImpTine in HgsAe.

(*
S4. get exp type from IHq that is equiv to imp

S4.1 apply IHq in 4 to get 5
Hexp: { e, S |= ([q] S) | (Agse’, egse’) } ---- HqExp

S4.2 apply imp exp type quiv to 4 and 5
HgsAe’: (Agse’ =vset= Agse) A (egse’ =e= egqs A e)
*)

apply IHq in HqImp as HqExp.
destruct HqExp as [(Agse’, eqgse’) HqExpl.
apply NoDupElem_vtype in HqExp as HndpAgse’; try assumption.

(*xS4.2 ExpQ_ImpType_Equiv_ExpQ_ExpType *)

pose ExpQ_ImpType_Equiv_ExpQ_ExpType as HgsAe’.

apply HgsAe’ with (A:=(Agse, eqgse)) in HqExp as HqsAe’’; try assumption.
clear HqsAe’. rename HgsAe’’ into HqgsAe’.

(*
S5. exists (Q/-\Qs)~"e (in Goal)

{e, S I= proj_v (Q/-\@s) [ql s | (Q/-\Q@s)~"e} *)

exists (QiQs~"e).

106

(*
S6. apply Proj_v in Goal with (A’ := Agse’) A (e’ := egse’)
—————— -—= -—= (1/2)
{ e, s 1= ([q] S) | (Agse’, egse’) }
S7. assumption 7. Qed.
(2/2)

subset_vqtype (Q/-\Qs)”"e (Agse’, egse’)

*)

apply Project_vE with (A’:=Agse’) (e’:=egse’); (x¥S7*)try assumption.

(*

8. (Q/-\@s)""e — (Q/-\(Ags, egs))""e — (Q/-\(Ags, egsAe))

S9. Agse’ =vset= Ags ; eqsq’ =e= eqse =e= eqs N e

subset_vqtype (Q/-\(Ags, egsA e)) (Ags, egsA e)
S10. subset_vqtype (A/-\B) B

Qed.

*)

rewrite HeqQiQs. destruct Q as (Aq, eq).
unfold addannot. simpl fst. simpl snd.

rewrite < subset_vqtype_correctness;

try (simpl; assumption).

unfold subset_vqtype_exp, subset_velems_exp. intros.

destruct H as [HIn He]. apply In_config_true with (c:=c) in HIn; try assumption.
unfold avelems_velems in HIn. simpl fst in *. simpl snd in *.

rewrite In_config_exists_true. unfold avelems_velems. simpl fst. simpl snd.
rewrite configVElemSet_push_annot in *. Search velems_inter.

simpl in HIn.

simpl.

107

unfold " =vqtype=", "=avset=" in *. simpl in *. specialize HqgsAe’ with c.

specialize HgsAe with c.

destruct ((E[[eql] c) && (E[L[eqgsl] c) && (E[[e]]l c)) eqgn:Hegegse.
{ rewrite <— In_config_exists_true in HIn. destruct HIn as [eInter HIn].
apply In_velems_inter in HIn.

rewrite In_config_exists_true in HIn.

assert (Hegse: (E[[egs]l] c¢) && (E[[el] c) = true).
{ rewrite < andb_assoc in Heqeqse. rewrite andb_true_iff in Heqegse.

destruct Heqegse; assumption. }
rewrite Hegse in HgsAe.
destruct (E[[egse’]] c);

rewrite HgsAe’ in HgsAe;
unfold "=set=" in HgsAe; specialize HqgsAe with x;
destruct HgsAe as [HgsAeIn HgsAeC];
rewrite < HgsAeln; auto.
}
{ destruct HIn. }

all: rewrite HeqQiQs in HndpQImp; unfold vqtype_inter_vq in HndpQImp;
simpl in HndpQImp; try (simpl; assumption).

all: inversion HndpQ; subst; auto.

{ (% Selection - E *)

simpl in HImp. simpl.

inversion HndpQ as [| | ¢’ g’ Hndpg | | | |]; subst.

inversion HImp as [| | |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
A’Imp HndpAA’Imp e’Imp vcImp
HqImp HcondImp | | |]; subst.

apply IHq in HqImp as HqExp; try auto.
destruct HqExp as [(A’, ea’) HqExp].

exists (A’, ea’). apply Select_vE; try assumption.
apply NoDupElem_vtype in HqExp as HndpAgse’; try assumption.

(*54.2 ExpQ_ImpType_Equiv_ExpQ_ExpType *)

108

pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpq HqImp HqExp) as Hqimpexp;

try assumption.

apply vcondtype_equiv with (e:=e) (vc:=v) in Hqimpexp; assumption.

4: { (x Empty - E %)

simpl in HImp. inversion HImp; subst.
simpl. exists (nil, 1itB false).

apply EmptyRelation_vE; try assumption. }

(* Choice - E/ Product - E/ SetOp - E %)
all: simpl in HImp; simpl;
inversion HndpQ as [| |
| £2 q1’ 92’ Hndpql Hndpq2
| q1’ 2’ Hndpql Hndpq2
| op’ q1’ g2’ Hndpql Hndpqg2 |]; subst;
inversion HImp as [| | |
I
eImp e¢’Imp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1lImp vq2Imp HndpvQ2Imp
A1Imp HndpAAl1Imp elImp A2Imp HndpAA2Imp e2Imp
HqlImp Hq2Imp
|
eImp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1Imp vq2Imp HndpvQ2Imp
A1Imp HndpAA1Imp elImp A2Imp HndpAA2Imp e2Imp
HqlImp Hq2Imp HInterImp
|
eImp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1Imp vq2Imp HndpvQ2Imp
A1Imp HndpAAlImp elImp A2Imp HndpAA2Imp e2Imp opImp
HqlImp Hq2Imp HEquivImp]; subst;

apply IHql in HqlImp as HqlExp; try auto;
apply IHq2 in Hq2Imp as Hq2Exp; try auto;
(*1, 5, 9: x*)destruct HqlExp as [(A1Exp, elExp) HqlExpl;
destruct Hq2Exp as [(A2Exp, e2Exp) Hq2Exp];
apply NoDupElem_vtype in HqlExp as HndpAlExp; try assumption;
apply NoDupElem_vtype in Hq2Exp as HndpA2Exp; try assumption;
try(exists (vqtype_union_vq (A1Exp, elExp) (A2Exp, e2Exp));
apply Choice_vE with (A2:=A2Exp) (e2:=e2Exp)
)3
try(exists (vqtype_union_vq (AlExp, elExp) (A2Exp, e2Exp));
apply Product_vE with (A2:=A2Exp) (e2:=e2Exp)

109

)3
try(exists (A1Exp, elExp);
apply SetOp_vE with (A2:=A2Exp) (e2:=e2Exp)
)5
try assumption;
pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpql HqlImp HqlExp) as Hqlimpexp;
pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpq2 Hq2Imp Hq2Exp) as Hq2impexp.

{ (* Product_vE_imp — velems_inter Al A2 =vset= [] *)
pose (vqtype_inter_vq_equiv) as HInterEqv.
apply HInterEqv with (A:=(A1Imp, elImp)) (A’:=(A1Exp, elExp)) in Hq2impexp as
HInterEqv’;
try (simpl; assumption).
clear HInterEqv. rename HInterEqv’ into HInterEqv.

rewrite HInterImp in HInterEqv. symmetry. assumption.

{ (* SetOp_vE_imp — (A1, el) =vqtype= (A2, e2) *)
symmetry in Hqlimpexp.
transitivity (A, ea); try assumption.

transitivity (A2Imp, e2Imp); try assumption.

Qed.

C.2.6 ExpQuery ImpType Equiv ExpQuery ExpType

Lemma ExpQ_ImpType_Equiv_ExpQ_ExpType e S q A A’ (HndpQ: NoDupElemvQ q):
{e,SI-[qds |l A} —
{e,Sl=1[ds | A} —
A =vqtype= A’.
Proof.
generalize dependent A’.
generalize dependent A.
generalize dependent e.
induction q; destruct A as (A, ea);
destruct A’ as (A’, ea’);

intros HImp HExp.

{ (x Relation - E *)

destruct v as (rn, (A_, e.)).
simpl in HImp.

simpl in HExp.

destruct (findVR rn S) as (rn_, (Ar, er)) eqn: HfindVR.

unfold getvs, getf in HImp. simpl in HImp.
unfold getvs, getf in HExp. simpl in HExp.

inversion HImp as [| eImp’ SImp’ HndpRSImp’ HndpASImp’

rnImp’ HeRImp’ A_Imp’ A’Imp’ HndpA’Imp’ e_Imp’ e’Imp’

HInVRImp |
I |1 1]; subst.

inversion HExp as [| eExp’ SExp’ HndpRSExp’ HndpASExp’
rnExp’ HeRExp’ A’Exp’ HndpA’Exp’ e’Exp’
HInVRExp HsatExp |
|1 1 1]; subst.

apply InVR_findVR in HInVRImp

as HInFindImp; try assumption.

apply InVR_findVR in HInVRExp

as HInFindImp’; try assumption.

rewrite HInFindImp in HInFindImp’.

inversion HInFindImp’; subst.
reflexivity.
(x =vset= *)reflexivity.

(* =e= *)simpl_equivE. destruct (E[[ea’]] c) eqn:Hea.
apply HsatExp in Hea. simpl in Hea. rewrite Hea. eauto.
eauto. *)

}

{ (% Projection - E *)
simpl in HImp.
simpl in HExp.

destruct (vtypeImpNOTC (1itB true) S ([q] S)) as (Ags, eqs) eqn:HqST.

destruct a as (Ap, ep).

inversion HImp as [| |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
e’Imp A’Imp HndpAA’Imp QImp HndpQImp
HqImp HsbsmpImp | | | |]; subst.

inversion HExp as [| |
eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp
e’Exp A’Exp HndpAA’Exp QExp HndpQExp

110

111

HqExp HsbsmpExpl| | | |]; subst.
apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAgs; try assumption.
inversion HndpQ as [l | Q’ q’ HndpAp HndpvQq | | | []; subst.
apply eq_equiv_vqtype in HqST.

apply (contex_intro_NOTC (1itB true))
with (e’:=e) (eq’:= (egs A (F) e)) in HqST; try assumption; try reflexivity.

apply vtypeImpNOTC_correct in HqImp as HqSTine; try assumption.
apply eq_equiv_vqtype in HqSTine.

(* equivalent context intro *)
assert (Htrue_e: (1itB true A (F) e) =e= e).
{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.
rewrite HqST in Htrue_e. rewrite HqSTine in Htrue_e.

symmetry. rewrite vqtype_fexp_assoc.

apply vqtype_inter_vq_equiv_Imp_Exp with (Ap:=Ap) (ep:=ep) (A’Imp:=A’Imp)
(e’Imp:=e’Imp)

in Htrue_e as Hvqtype_inter; try reflexivity; try (simpl; assumption).

rewrite vqtype_inter_vq_equiv with (A’:=(Ap, ep)) (B’:=(Ags, egs A (F) e)) in
Hvqtype_inter;
try auto; try (symmetry; assumption); try reflexivity.

{ (x Selection - E %)
simpl in HImp.
simpl in HExp.

destruct (vtypeImpNOTC (1itB true) S ([q] S)) as (Ags, eqgs) eqn:HgST.

inversion HImp as [| | |
eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp
A’Imp HndpAA’Imp e’Imp vcImp
HqImp HcondImp | | |]; subst.

inversion HExp as [| | |

eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp

A’Exp HndpAA’Exp e’Exp vcExp
HqExp HcondExp | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HQST as HndpelemAgs; try assumption.
inversion HndpQ; subst.

apply IHq with (A’:=(A’, ea’)) in Hqlmp; try assumption.
}

4:{ (* Empty - E *)
inversion HImp; subst. simpl ImptoExp in HExp.

inversion HExp; subst. reflexivity.

}
all: (x Choice - E / Product - E/ SetOp -E x)

simpl in HImp;
simpl in HExp;

inversion HndpQ as [l |
| £2 q1’ g2’ Hndpql Hndpq2
| 91’ g2’ Hndpql Hndpq2
| op’ q1’ g2’ Hndpql Hndpq2 |]; subst;

inversion HImp as [| | |
|
eImp e¢’Imp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1lImp vq2Imp HndpvQ2Imp
A1Imp HndpAAl1Imp elImp A2Imp HndpAA2Imp e2Imp
HqlImp Hq2Imp
|
eImp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1Imp vq2Imp HndpvQ2Imp
A1Imp HndpAA1Imp elImp A2Imp HndpAA2Imp e2Imp
HqlImp Hq2Imp HInterImp
|
eImp SImp HndpRSImp HndpASImp
vqlImp HndpvQ1Imp vq2Imp HndpvQ2Imp
A1Imp HndpAAlImp elImp A2Imp HndpAA2Imp e2Imp opImp
Hql1Imp Hq2Imp HEquivImp]; subst;
inversion HExp as [| | |
|
eExp e’Exp SExp HndpRSExp HndpASExp
vqlExp HndpvQ1Exp vq2Exp HndpvQ2Exp
A1Exp HndpAA1Exp elExp A2Exp HndpAA2Exp e2Exp
HqlExp Hq2Exp

112

113

|

eExp SExp HndpRSExp HndpASExp

vqlExp HndpvQ1Exp vq2Exp HndpvQ2Exp

A1Exp HndpAA1Exp elExp A2Exp HndpAA2Exp e2Exp
HqlExp Hq2Exp HInterExp

|

eExp SExp HndpRSExp HndpASExp

vqlExp HndpvQ1Exp vq2Exp HndpvQ2Exp

A1Exp HndpAA1Exp elExp A2Exp HndpAA2Exp e2Exp opExp
HqlExp Hq2Exp HEquivExp]; subst;

apply (IHql Hndpql _ _ _ HqlImp) in HqlExp as HqlEq;
apply (IHg2 Hndpg2 _ _ _ Hq2Imp) in Hq2Exp as Hq2Eq;

(* 3: SetOp - E *) try assumption;

try (apply vqtype_union_vq_equiv with (A:=(A1Imp, elImp)) (A’:=(A1Exp, elExp)) in
Hq2Eq;

assumption).

Qed.

