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Variation in data is abundant and ubiquitous in real-world applications. Manag-

ing variation in databases is, however, difficult and has been extensively studied by the

database community. Schema evolution, data integration, and database versioning are

examples of well-studied forms of database variation with effective context-specific so-

lutions. However, variation appears in different forms and contexts in databases, and

existing approaches cannot be generalized to handle arbitrary forms of variation irre-

spective of the context. Moreover, in practice, different forms of variation intersect in a

particular context. Variational databases (VDB) provide a fundamental solution to vari-

ation management by explicitly encoding variation into relational databases that allows

addressing different kinds of variation simultaneously. To support expressing variation in

information need, traditional relational algebra (RA) is extended to variational relational

algebra (VRA). VRA comes with a static type system that checks the validity of varia-

tional queries written in VRA. This thesis extends the formalization and formally verifies

properties of the variational database management system (VDBMS). Variational sets

and set operations definitions are formally verified and VDBs are formally encoded using

them. Then, the correctness of the VRA type system with respect to the RA type system

is formally specified and verified. VDBMS also allows writing variational queries with-

out repeating variations that are already encoded in the VDB and sub-queries. These

implicitly annotated v-queries get explicitly annotated by the system. Therefore, this

thesis further formally verifies the process of explicitly annotating variational queries.
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Chapter 1: Introduction

The difficulty of managing variation is a widely recognized and highly studied problem

in the database community. Variation is ubiquitous in nature and society, so it is not

surprising that it is ubiquitous in the real-world applications that databases are applied

to. However, variation has not been studied as a general concept in databases. Instead,

many specific kinds of variation have been addressed by research on schema evolution,

data integration, and data versioning. There is a lack of widespread acknowledgment that

these are solving different facets of a general problem, potentially with a generic solution.

Consequently, variation scenarios that do not fit neatly into one of the scenarios addressed

by these well-studied facets must still resort to expensive manual workarounds. Another

phenomenon that is common in databases but has not been generally addressed is when

different kinds of variation interact. For example, variation can occur in both space

and time dimensions in database-backed software produced by software product lines

(SPLs) [3, 10, 34, 7]. This thesis extends formalization and formally verifies properties

of the Variational Database Management System (VDBMS) [6, 7, 5], which provides

a framework for expressing variation in relational databases. The main advantage of

VDBMS is that its encoding of variation is generic and explicit, making it suitable for

all kinds of variation in relational databases, and for the interactions of multiple kinds of

variation. Formal encoding and verification in this thesis are done in Coq proof assistant

[33].

Variation in databases appears in different levels and dimensions. Databases can

vary in the level of their structure (i.e. schema), their content, as well as the queries

applied to them. This variation can also happen in two dimensions—time and space.

Variation in time refers to changes in the schema, content, or queries of the database

over time. Schema evolution and data migration are two well-studied and well-supported

forms of database variation in time [27, 11, 4, 32, 29]. Typically in these works, historical

changes to the schema are documented in an external document [29] or tracked through

timestamps attached to the database [27, 11, 4, 32] so that data can be safely migrated

forward towards new versions. They also provide convenient ways to write temporal
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queries on these temporal representations of databases [21, 32]. On the other hand, vari-

ation in ”space” refers to the variations that exist in parallel. Work on variation in space

exists in the context of data integration [14] which provides a unified interface to query

combined data from different sources. Database versioning supported through [8, 19] is

another example of variation in space where variation occurs in the level of content and

query. Schema evolution, data migration, databases integration and database version-

ing are specific instances of database variation where variation occurs in some level and

dimension. However, different instances of variation can also interact with each other in

a specific context.

Database-backed SPLs are an example where database variation in time and space

dimensions interact with each other [1]. SPL is an approach to mange variation in

software. All supported features of a software system are developed and maintained

in a common code base. Variants of the software known as products of the SPL are

created by enabling and disabling features based on user requirements. Consequently,

databases for products structurally differ from each other in the form of inclusion and

exclusion of tables and attributes based on selected features. However, in practice,

many SPLs use a single database representation with all tables and features included.

Shipping the same database with each product is not efficient, error-prone, and results

in lots of null values because of disabled features in individual products [7]. Lots of

work has been done to manage structural variation in space in SPLs. One approach is

to model data variability in SPLs [2]. The universal data model links SPL features to

concepts in the data model and specialized data models can be generated for products.

These specialized data models later can be realized as specialized database schemas [22].

Another solution provided in [20] presents a tool that can generate a schema variant for

each product from the universal schema by maintaining connection between SPL features

and schema elements. However, none of these works consider content-level variation

in SPL, nor do they provide support to express information need over databases with

structural variations. In addition to variation in space, SPLs also evolve over time as a

result of inevitable software evolution. Hence, the shared database needs to evolve over

time as well [18]. Variation in time in an SPL database has been separately addressed

by adapting existing work on database evolution [18] which, however, cannot encode

variation in space.

The partial support for managing variation in SPL databases highlights a gap in re-
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search to support the interaction of database variation. In general, in database variation

management research, solutions are tailored to specific instances, for example, schema

evolution, data versioning, data integration, or model variability for model-oriented in-

stances like SPL. They cannot be generalized to manage any instances of variation or

to support variation interaction among different instances. VDBMS fills these gaps in

database variation management research.

VDBMS considers variation as an orthogonal concern, which enables encoding differ-

ent forms of variation directly into the database. Although application-specific solutions

might perform better at their niches, VDBMS can be used irrespective of contexts and

facilitates interaction among variations that has not been addressed before. In essence,

a variational database represents multiple plain relational databases that differ in their

structure and content, possibly both in time and space, and encodes the variability

explicitly within the database.

Variational databases are defined based on variational sets [16]. This thesis formally

encodes variational set and its operations, formally defines and encodes variational set

properties, then provides a formal proof of correctness of variational set union and inter-

section operation. Then, it formally encodes variational databases with the formalized

variational sets.

Moreover, VDBMS provides a query language that accounts for variation directly.

To support writing variational queries, traditional relational algebra (RA) is extended

to variational relational algebra (VRA) by incorporating choice calculus [35]. Varia-

tional queries written in this extended algebra can express the same intent over different

database variants or different intents over different database variants in a variational

database. In other words, like variational databases, variational queries also represent

multiple plain queries. Due to their extended expressiveness, variational queries are more

complicated than plain relational queries. Therefore, VRA is coupled with a static type

system to check the validity of variational queries in terms of their compliance with the

variation encoded in the schema and content of the targeted variational database.

The VRA type system describes the structure of the result of running a variational

query on a variational database. For the VRA type system to be correct, it must preserve

variation encoded in variational queries. In other words, the variational result of running

a variational query on a variational database must be equivalent to running each variant

of the variational query on the corresponding variant of the database. With variation
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preservation property, VRA type system ensures that each query-database variant is

compatible. The variation preservation property along with RA’s type safety [30] ensures

that VRA is also type safe. This thesis, therefore, provides a formal encoding of VRA

and its type system and provides a formal proof of the VRA type system’s variation

preservation property.

Moreover, to be more user-friendly, VDBMS provides an implicit way of writing vari-

ational queries. The idea is that users should not be burdened with including information

that can be inferred from the variational schema or from information encoded elsewhere

in the query. With this in mind, implicitly annotated v-queries allow not repeating vari-

ation already encoded in the variational schema and sub-queries by omitting presence

conditions that can be inferred. Users are only required to include additional conditions

or constraints they want to impose. These implicitly annotated variational queries get

explicitly annotated by the system with variation inferred from the underlying varia-

tional schema and sub-queries. Typing of implicitly annotated variational queries, done

by the implicit VRA type system, therefore must allow and account for implicitness. To

prove the correctness of the implicit VRA type system, it is necessary and sufficient to

show that if an implicitly annotated variational query is well-typed in the implicit VRA

type system, then its explicitly annotated counterpart is also well-typed in the VRA type

system, and that these types are equivalent. This thesis formally encodes the process

of explicitly annotating variational queries and provides a formal proof of correctness of

the implicit VRA type system with respect to the VRA type system.

The following chapters elaborate the contributions of the thesis. Here is the list of

contributions along with the respective chapters and sections that discuss them.

� A formal encoding of variational set and its operations, formal definition and en-

coding of variational set properties, and a formal proof of correctness of variational

set union and intersection operations. (Section 2.3.1).

� A formal encoding of Variational Database (VDB) and its configuration functions

that eliminate variation from VDB (Sections 2.3.2 and 2.3.3).

� A formal encoding of Variational Relational Algebra (VRA) and its type system,

and the configuration function that eliminates variation from variational queries

written in VRA (Section 3.1, 3.2).
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� A formal verification of the VRA type system that guarantees the variation preser-

vation property of the type system (Section 3.3).

� A formal encoding of the implicit VRA type system (Section 4.1) and the explicitly

annotating function that explicitly annotates the implicitly annotated variational

queries(Section 4.2).

� Finally, a formal verification of the implicit VRA type system with respect to the

VRA type system (Section 4.3).
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Chapter 2: Formal Encoding of Variational Database

A Variational Database (VDB) extends a traditional relational database and represents

many variants of a single relational database by capturing where each variant differs

from the others. Any database element, therefore, has a conditional presence in the

variational database with respect to the variant or variants it belongs to. These presence

conditions are encoded explicitly into the database by annotating each element with

their respective presence condition.

2.1 Variation Encoding and Variational Elements

Variation is encoded in a database by making its elements’ presence conditional. The

presence condition of elements is implemented through annotation of elements with fea-

ture expressions (Section 2.1.1) which are basically boolean expressions. Feature expres-

sions are evaluated to a boolean value through a process called configuration. A true

value indicates that the element is present and a false value indicates its absence.

2.1.1 Features and Feature Expressions

Presence conditions need to capture where each variant differs from others in a variational

database in terms of which elements are present in a particular variant. Key entities

that uniquely identify variants of a database can be used to annotate its elements. For

example, in schema evolution, the schema evolves over time and each schema variant

can be uniquely identified by a timestamp. Hence, elements present in a variant can be

annotated with its respective timestamp. In software product lines (SPL), SPL features

create database variants. Hence, features can be used as key identifiers for annotation.

In variational databases, we borrow the term features from SPL to refer to these key

identifiers. For simplicity, features are assumed to be boolean valued variables but can

be extended to multi-valued variables. When variants interact with each other, presence

conditions of their elements depend on multiple features. These interactions can easily be
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Feature Expression Syntax:

f ∈ F Feature Name

b ∈ B ::= true | false Boolean Value
e ∈ E ::= b | f | ∼ e | e ∧ e | e ∨ e Feature Expression

Figure 2.1: Feature Expression Syntax.

captured with propositional formulas of features, called feature expressions (Figure 2.1).

For example, in schema evolution when an element is present in several schema variants,

it can be annotated with disjuncted features representing those variants. In an SPL, if a

database element can only be present when two specific SPL features are enabled, then

the element can be annotated with the conjunction of two features that represents the two

SPL features. In conclusion, features are boolean variables that capture where database

variants differ from each other and feature expressions are propositional formulas of

features that describe presence conditions of elements in a variational database through

annotation.

Feature expressions are formally encoded in Coq as follows.

(** Feature Name *)

Definition fname := string.

(** Feature Exression Syntax. *)

Inductive fexp : Type :=

| litB : bool → fexp

| litF : fname → fexp

| comp : fexp → fexp (* negation *)

| meet : fexp → fexp → fexp (* conjunction *)

| join : fexp → fexp → fexp. (* disjunction *)

Notation "∼(F) f" := (comp f) (at level 35, right associativity).

Infix "∧ (F)" := meet (at level 41, right associativity).

Infix "∨ (F)" := join (at level 45, right associativity).

2.1.2 Configuration/Variation Elimination

The set of all features of a variational database, denoted by F, represents its configuration

space. The configuration space of a variational database is assumed to be closed for
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Feature Expression Configuration:

EJ.K : E→ C→ B

EJbKc = b

EJfKc = c f

EJ∼ eKc =

{
true, if EJeKc = false

false, otherwise

EJe1 ∧ e2Kc =

{
true, if EJe1Kc = true and EJe2Kc = true

false, otherwise

EJe1 ∨ e2Kc =

{
true, if EJe1Kc = true or EJe2Kc = true

false, otherwise

Figure 2.2: Feature Expression Configuration.

simplicity. A configuration c maps each feature in F to a boolean value. When applied

to a variational database, a configuration produces a particular database variant after

all variations have been eliminated.

The feature expression configuration function evaluates a feature expression with

respect to a particular configuration of its pertaining features as defined in Figure 2.2

and encoded as the Coq function semE shown below.

(** Feature Configuration. *)

Definition config := fname → bool.

(** Feature Expression Configuration. *)

Fixpoint semE (e : fexp) (c : config) : bool :=

match e with

| litB b ⇒ b

| litF f ⇒ c f

| ∼(F) e ⇒ negb (semE e c)

| e1 ∧ (F) e2 ⇒ (semE e1 c) && (semE e2 c)

| e1 ∨ (F) e2 ⇒ (semE e1 c) || (semE e2 c)

end.

Notation "E[[ e ]] c" := (semE e c) (at level 50, left associativity).
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Feature Expression Properties:

e1 ≡e e2 iff ∀c ∈ C : EJe1Kc = EJe2Kc
sat(e) iff ∃c ∈ C : EJeKc = true

unsat(e) iff ∀c ∈ C : EJeKc = false

e1 → e2 iff ∀c ∈ C : EJe1Kc = true→ EJe2Kc = true

Figure 2.3: Feature Expression Properties.

Properties of feature expressions are shown in Figure 2.3. Two feature expressions

e1 and e2 are equivalent, denoted by e1 ≡e e2, if, for all configurations, they result in

the same boolean value. A feature expression e is satisfiable, denoted by sat(e), if there

exists a configuration for which it evaluates to true, otherwise it is unsatisfiable, denoted

by unsat(e). A feature expression e1 implies another feature expression e2, denoted

by e1 → e2, if, for any configuration, first expression evaluates to true then, with the

same configuration, the later evaluates true as well. Feature expression equivalence,

satisfiability, unsatisfiability, and implication are encoded in Coq as equivE, sat, unsat

and implies, respectively.

(** Feature Expression Properties *)

(** Feature Expression Equivalence *)

Definition equivE : relation fexp :=

fun e e’ ⇒ forall c, (semE e c) = (semE e’ c).

Infix "=e=" := equivE (at level 70) : type_scope.

(* Feature Expression Satisfiability *)

Definition sat (e:fexp): Prop :=

exists c, semE e c = true.

Definition unsat (e:fexp): Prop :=

forall c, semE e c = false.

(* Feature Expression Implication *)

Definition implies (e1 e2:fexp) (c:config) : Prop :=

(E[[ e1 ]] c) = true → (E[[ e2 ]] c) = true.

Notation "e1 -e→ e2 | c" := (implies e1 e2 c) (at level 91, left

associativity).

The set of all possible configurations, denoted by C, represents a set of identifiers for
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all possible variants of a variational database. Because of interactions among variants,

some configurations may be invalid. This can be captured again by a feature expression

known as feature model. The entire variational database is annotated with the feature

model to restrict its configuration space. For example, let’s assume, in an SPL S, an

SPL product can either be educational, denoted by feature, edu or commercial, denoted

by, com. That is, SPL features edu and com cannot be true at the same time. Since

SPL features create database variants in SPLs, the configuration space of the variational

database for the SPL S can be restricted with the feature model (edu∧ ∼ com) ∨ (∼
edu∧ com) which enforces that exactly one of these features must be true and the other

must be false.

2.2 Relational Databases

A relational database stores information in a structured way enforced by its schema. A

database schema S is a finite set of relation schemas {R1, ..., Rn}. A relation schema R

is a finite set of attributes r{a1, ...., ak} where r denotes the name of the relation.

The content of a database is organized under the structure provided by its relation

schemas. The respective content for each relation schema is called the relation content.

A relation content RC of a relation schema R is a finite set of tuples {U1, ..., Um}.
Each tuple Ui,∀i∈[1,m] contains values (v1, ...., vk) corresponding to respective R’s set of

attributes {a1, ...., ak}. The pair of a relation content RC and its relation schema R is

called a table T = (R,RC). An instance I of a database with schema S is a set of tables

{T1, ...., Tn}.

2.3 Variational Databases

Variational databases extend relational databases to include support for variation. The

basic structures underlying elements of a relational database are sets. Hence, Sec-

tion 2.3.1 extends traditional sets and set operations to variational sets [16]; this section

also includes formal proofs of variational set properties (Section 2.3.1.1) and the cor-

rectness of variational set operations with respect to traditional set operations (Section

2.3.1.3). Finally, variational schemas and variational tables, that is the structure and

contents of variational databases, are defined in Sections 2.3.2 and 2.3.3, respectively.
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2.3.1 Variational Set

Variational sets are sets of elements with conditional presence, that is, sets of variational

elements (Section 2.1). Each set element is annotated with a feature expression that en-

codes its presence condition. For example, Xv1 = {x1
f1∧f2 , x2

f2∨f3 , x3
f3} is a variational

set where elements x1, x2, and x3’s presence conditions are denoted by the feature ex-

pressions (f1∧f2), (f2∨f3), and f3 respectively. A variational set itself can be annotated

with a feature expression, for example, Xv
f
1 = {x1

f1∧f2 , x2
f2∨f3 , x3

f3}f . Annotating a

variational set with a feature expression f further restricts the condition under which

its variational elements are present. This is equivalent to conjuncting each constituting

variational element’s annotation with f, for example, {x1
f1∧f2 , x2

f2∨f3 , x3
f3}f is equiva-

lent to {x1
f1∧f2∧f , x2

f2∨f3∧f , x3
f3∧f}. Variational sets are alternatively called as v-sets

and they are used interchangeably in this thesis.

Plain and variational sets are formally encoded in Coq as follows. Plain elements,

elem are encoded as strings. Variational elements, velems are annotated elems where

annotations are feature expressions, fexp.

(* Plain Element *)

Definition elem : Type := string.

(* Variational Element *)

Inductive velem : Type :=

| ae : elem → fexp → velem.

Plain sets are simply sets of plain elements, elem and variational sets are sets of

variational elements, velem.

(* Plain Element Set *)

Definition elems : Type := set elem.

(* Variational Element Set *)

Definition velems : Type := set velem.

(* Annotated Variational Element *)

Definition avelems : Type := (velems * fexp) %type.

Conceptually, a variational set represents multiple plain sets which are called variants

of the variational set. A plain set is generated from a variational set by configuring feature

expressions of its variational elements with respect to a particular configuration and

including elements with true value. This process is called variational set configuration
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V-Set Configuration:

XJ.K : Xv → C→ X

XJ{xe} ∪XvKc =

{
{x} ∪ XJXvKc, if EJeKc = true

XJXvKc, otherwise

XJ{}Kc = {}

Figure 2.4: Variational Set Configuration.

Annotated V-Set Configuration:

AXJ.K : AXv → C→ X

AXJ Xv
e Kc =

{
XJXvKc, if EJeKc = true

{}, otherwise

Figure 2.5: Annotated Variational Set Configuration.

(Figure 2.4). For example, {f1, f2, f3} is the set of all features in the variational set Xv1.

Mapping it to {true, false, true} evaluates presence of condition of x1 to false, but

presence of conditions of both x2 and x3, to true. Hence, the corresponding plain set

is {x2, x3}. Similarly, configuring Xv1 with feature configuration {true, true, false}
generates another plain set, {x1, x2}.

Variational set and annotated variational set configuration shown in Figure 2.4 and

2.5 are encoded in Coq as below.

(* Variational Set Configuration X[]c *)

Fixpoint configVElems (ves : velems) (c : config) : elems :=

match ves with

| nil ⇒ nil

| cons (ae a e) ves ⇒ if semE e c

then (cons a (configVElems ves c))

else ( configVElems ves c )

end.

Notation "X[[ ves ]] c" := (configVElems ves c) (at level 50).

(* Annotated Variational Set *)

Definition avelems : Type := (velems * fexp) %type.

(* Annotated Variational Set Configuration AX[]c *)
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Definition configaVElems (aves : avelems) (c : config) : elems :=

match aves with

|(ves, e) ⇒ if semE e c then configVElems ves c else nil

end.

Notation "AX[[ ves ]] c" := (configaVElems ves c) (at level 50).

The set of all possible configurations represents the all possible variants of a vari-

ational set. Variational set properties and operations are defined with respect to the

respective properties and operations for plain sets.

2.3.1.1 Variational Set Properties

Variational set needs to preserve plain set property of having distinct elements over

variation elimination, that is, configuring a variational set should generate a plain set.

For example, Xv2 = {x1
f1 , x2

f2 , x2
f3} is a variational set as plain element x2 is re-

peated with different annotations. Configuring Xv2 by mapping feature set {f1, f2, f3}
to {false, true, true} results in {x2, x2} which, however, is not a set. Hence, I define the

following property, No-Dup-Elem to restrict variational set not to have multiple entries

of a plain element with different annotations.

Definition 2.3.1 (No-Dup-Elem). Xv is a variational set with property No-Dup-Elem

if ∀xe ∈ Xv, (@e
′
. e
′ 6= e and xe

′
∈ Xv).

Technically, any variational set with repeated plain elements with different annotation

like Xv2 doesn’t violate set properties in a variational set. However, to ensure correctness

of variational set operations with respect to plain set operations (Section 2.3.1.3), it is

necessary to restrict them with No-Dup-Elem property . Moreover, this property does

not limit expressiveness of variational sets. Any variational set that has repeated plain

elements with different annotation can be modified to an equivalent variational set with

this expected No-Dup-Elem behavior.

To formally encode No-Dup-Elem as an inductive property, I first define another

property In-Elem that states that a plain element is in a variational set.

Definition 2.3.2 (In-Elem). A plain element x is in a variational set Xv, that is, (In-

Elem x Xv) if ∃e. xe ∈ Xv.

In-Elem is formally encoded in Coq as a functional property InElem.
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(* In-Elem Property: Plain Element in V-set *)

Function InElem (a:elem) (l:velems) {struct l}: Prop :=

match l with

| [] ⇒ False

| ae x e :: xs ⇒ x = a ∨ InElem a xs

end.

Then, No-Dup-Elem property is formalized in Coq as NoDupElem using InElem. Note

that, In property in Coq Standard Library is different than InElem and is only able to

recognize if a variational element is in a variational set.

(* No-Dup-Elem Property: No Duplicate Plain Element in V-set *)

Inductive NoDupElem : velems → Prop :=

| NoDupElem_nil : NoDupElem nil

| NoDupElem_cons : forall a e l, InElem a l → NoDupElem l

→ NoDupElem ((ae a e)::l).

To achieve No-Dup-Elem property in a variational set, annotations of all occurrences

of an plain element are disjuncted to form a new feature expression. Then, all occurrences

of that plain element are replaced by a single entry annotated with the new feature

expression. I define the function, nodup-elem, that takes any variational set and returns

an equivalent variational set that has the No-Dup-Elem property. nodup-elem is defined

with three helper functions existsb-elem, get-annot and remove-elem.

Definition 2.3.3 (existsb-elem). For any plain element x and v-set Xv, (existsb-elem x

Xv) is true if plain element a exists in Xv with some annotation, and false, otherwise.

Definition 2.3.4 (get-annot). For any plain element x and v-set Xv, (get-annot x Xv)

finds all occurrences of x in Xv, concatenates their annotations with boolean OR (∨)

and returns the concatenated annotation.

Definition 2.3.5 (remove-elem). For any plain element x and v-set Xv, (remove-elem

x Xv) removes all occurrences of plain element x in Xv, that is, all variational elements

in v-set that have underlying plain element x.

Definition 2.3.6 (nodup-elem). For any v-set Xv, (nodup-elem Xv) returns a v-set

equivalent to Xv and has No-Dup-Elem property, that is, it concatenates annotations of

each plain element x that exists in Xv (Definition 2.3.3), using get-annot in definition

2.3.4 and keeps one occurrence of x with the concatenated annotation removing others

with remove-elem from definition 2.3.5.
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Above functions existsb-elem, get-annot, remove-elem and nodup-elem are encoded in

Coq as existsbElem, get annot, removeElem and nodupelem respectively.

(* Check whether Plain element a exists in velems \vElemList *)

Definition existsbElem (a : elem) (A : velems) := existsb (eqbElem a) A.

(* Get concatenated annotaion of a Plain element a from velems A *)

Definition get_annot (a : elem) (A: velems) : fexp :=

fold_right Feature.join (litB false) (map (sndVelem) (filter (eqbElem a) A)).

(* Remove all occurances of a Plain element a from velems A *)

Function removeElem (a : elem) (A: velems) {struct A} : velems :=

match A with

| nil ⇒ nil

| ae a’ e’ :: A’ ⇒ match (string_beq a a’) with

| true ⇒ removeElem a A’

| false ⇒ ae a’ e’ :: removeElem a A’

end

end.

(* Concatenation of Duplicate Plain Elements in V-set *)

Function nodupelem (v : velems) {measure List.length v} : velems :=

match v with

| nil ⇒ nil

| ae a e :: vs ⇒ match existsbElem a vs with

| false ⇒ ae a e :: nodupelem vs

| true ⇒ let e’ := get_annot a vs in

(ae a (e ∨ (F) e’) ) :: nodupelem (removeElem a vs)

end

end.

all:intros; simpl; eauto.

Defined.

Following lemma proves that resultant variational set from nodup-elem has No-Dup-

Elem property.

Lemma 2.3.7. For any v-set, Xv, No-Dup-Elem (nodup-elem Xv).

Formal proof of the above lemma encoded as NoDupElem nodupelem in Coq is given below.

(* nodupelem ensures NoDupElem *)

Lemma NoDupElem_nodupelem (v:velems) : NoDupElem (nodupelem v).

Proof. functional induction (nodupelem v) using nodupelem_ind.

+ apply NoDupElem_nil.

+ apply NoDupElem_cons. rewrite InElem_nondupelem.

rewrite ← existsbElem_InElem.

rewrite e1. apply diff_false_true. auto.
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+ apply NoDupElem_cons. rewrite InElem_nondupelem.

apply notInElem_removeElem. apply IHl.

Qed.

To prove that function nodup-elem generates an equivalent variational set, we first

need to define an equivalence relation on plain lists. Note that, configured variational

sets without No-Dup-Elem property generate plain lists, not plain sets. Two plain lists

are defined to be equivalent if they cover the same set of elements, irrespective of their

order or number of occurrences in the lists.

Definition 2.3.8 (Plain list equivalence). Two plain lists, l1 and l2 are equivalent,

denoted by l1 ≡list l2, iff ∀x. x ∈ l1 ⇐⇒ x ∈ l2.

Then, two variational sets are defined to be equivalent with respect to plain lists if,

for all configurations, their respective configured plain lists are equivalent.

Definition 2.3.9 (V-set equivalence-list). Two variational sets, Xv1 and Xv2 are equiv-

alent, denoted by Xv1 ≡vlist Xv2 iff ∀c. XJXv1Kc ≡list XJXv2Kc .

Plain list equivalence and V-set equivalence-list are encoded in Coq as equiv elems list

and equiv velems list.

(* Plain list equivalence *)

Definition equiv_elems_list : relation list elem :=

fun A A’ ⇒ forall a, (In a A ↔ In a A’).

Infix "=list=" := equiv_elems_list (at level 70) : type_scope.

(* V-set equivalence-list *)

Definition equiv_velems_list : relation velems :=

fun A A’ ⇒ forall c, (X[[A]]c) =list= (X[[A’]]c).

Infix "=vlist=" := equiv_velems_list (at level 70) : type_scope.

Following lemma proves that nodup-elem generates an equivalent variational set.

Lemma 2.3.10 (nodupelem-gen-equiv-velem). For any variational set Xv, nodupelem

Xv ≡vlist Xv.

Above lemma is encoded in Coq as nodupelem gen equiv velems list as below and its

corresponding proof is included in Appendix A.1.1.
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Lemma nodupelem_gen_equiv_velems_list: forall v, v =vlist= (nodupelem v).

Proof. (See Appndix A.1.1 ). Qed.

From now on, in this thesis, variational sets are assumed to have No-Dup-Elem prop-

erty, variational set operations maintain No-Dup-Elem property and V-set equivalence

is re-defined with respect to the plain set equivalence.

Definition 2.3.11 (Plain set equivalence). Two plain sets, X1 and X2 are equivalent,

denoted by X1 ≡set X2, iff ∀x. x ∈ X1 ⇐⇒ x ∈ X2.

Definition 2.3.12 (V-set equivalence). Two variational sets, Xv1 and Xv2 are equiva-

lent, denoted by Xv1 ≡vset Xv2 iff ∀c. XJXv1Kc ≡set XJXv2Kc.

Definition 2.3.13 (Annotated V-set equivalence). Two variational sets, Xv
e1
1 and Xv

e2
2

are equivalent, denoted by Xv
e1
1 ≡avset Xv

e2
2 iff ∀c. AXJXv

e1
1 Kc ≡set AXJXv

e2
2 Kc.

Plain set equivalence, V-set equivalence and Annotated V-set equivalence are encoded

in Coq as equiv elems, equiv velems and equiv avelems respectively.

(* Plain set equivalence *)

Definition equiv_elems : relation elems:=

fun A A’ ⇒ forall a, (In a A ↔ In a A’) ∧
( count_occ string_eq_dec A a = count_occ string_eq_dec A’ a).

Infix "=set=" := equiv_elems (at level 70) : type_scope.

(* V-set equivalence *)

Definition equiv_velems : relation velems :=

fun A A’ ⇒ forall c, X[[ A]] c =set= X[[ A’]]c.

Infix "=vset=" := equiv_velems (at level 70) : type_scope.

(* Annotated V-set equivalence *)

Definition equiv_avelems : relation vqtype :=

fun X X’ ⇒ forall c, AX[[ X]]c =set= AX[[ X’]]c.

Infix "=avset=" := equiv_avelems (at level 70) : type_scope.

Plain set, v-set and annotated v-set equivalences are equivalence relations with reflexivity,

symmetry and transitivity. Formal proofs of these properties are included in Appendix

A.1.2, A.1.3 and A.1.4. In the rest of the thesis, above equivalence relations are going

to be used for plain set, v-set and annotated v-set equivalence.
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Variational set subset, (V-set subset) extends plain set subset property to variational

sets.

Definition 2.3.14 (Plain set subset). A plain set, X1 is subset of another set X2 iff

elements of X1 are also elements of X2, that is, ∀x. x ∈ X1 → x ∈ X2.

Definition 2.3.15 (V-set subset). The v-set Xv1 is subset of the v-set Xv2, denoted

by Xv1 ⊆ Xv2, iff ∀xe1 ∈ Xv1, ∃e2. e1 → e2 and xe2 ∈ Xv2, i.e., all plain ele-

ments in Xv1 also exist in Xv2 with more specific presence condition s.t. in a shared

configuration, all elements in configured Xv1 are present in configured Xv2. For ex-

ample, {2true, 3f1} ⊆ {2true, 3f1∨f2 , 4true}, however, {2true, 3f1} * {2true, 3f1∧f2} and

{2true, 3f1 , 4true} * {2true, 3f1∨f2}.

Plain subset and v-set subset is enocoded in Coq as subset and subset velems exp as

follows.

(* Plain Set Subset *)

Definition subset (A A’: elems):= forall x, (In x A → In x A’) ∧
(count_occ string_eq_dec A x <= count_occ string_eq_dec A’ x).

(* Variational Set Subset *)

Definition subset_velems_exp (A A’: velems) :Prop := forall x e c,

In (ae x e) A ∧ ((E[[ e]]c) = true) →
exists e’, In (ae x e’) A’ ∧ (E[[ e’]]c) = true.

Correctness of v-set subset property that it correctly extends the plain set subset

property to variational sets can be proved by following theorem which states that if a v-

set Xv1 is subset of Xv2, then after configuring Xv1 and Xv2 with the same configuration

c, generated plain sets have subset relationship and it is true for all configurations.

Theorem 2.3.16. For any two v-sets, Xv1 and Xv2, Xv1 is subset of Xv2 ⇐⇒
∀c. XJXv1Kc is subset of XJXv2Kc .

Above theorem is encoded in Coq as subset velems correctness as below and its formal

proof is included in Appendix A.1.5.

Theorem subset_velems_correctness A A’ (HndpA: NoDupElem A) (HndpA’: NoDupElem A’):

subset_velems_exp A A’ ↔ (forall c, subset (X[[ A]]c) (X[[ A’]]c)).

Proof. (See Appndix A.1.5 ). Qed.

This correctness theorem basically provides semantic definition of v-set subset prop-

erty which can easily be extended to annotated v-set subset property.
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Definition 2.3.17 (Annotated v-set subset). For any two annotated v-sets, Xv
e1
1 and

Xv
e2
2 , Xv

e1
1 is subset of Xv

e2
2 iff ∀c. AXJXv

e1
1 Kc is subset of AXJXv

e2
2 Kc.

Annotated v-set subset is encoded in Coq as subset avelems as shown below.

Definition subset_avelems ( A A’: avelems ) : Prop := forall c,

subset (AX[[ A]]c) (AX[[ A’]]c).

2.3.1.2 Variational Set Operations

Plain set operations are extended to variational set operations that maintain equivalency

to plain set operations over variation elimination. In other words, configuring result of

a variational set operation is equivalent to configuring variational sets first and then

applying the respective plain set operation on them. This property is defined as follows.

Definition 2.3.18 (V-set operation variation preservation). A binary V-set operation

(*) is variation preserving if for any two V-sets, Xv1 and Xv2, ∀c. XJXv1 ∗Xv2Kc ≡set
XJXv1Kc ∗ XJXv2Kc.

Variational set union and intersection, V-set union and V-set intersection extend

plain set union and set intersection for variational sets. The set union of two plain sets,

X1 and X2, X1 ∪ X2 is a plain set itself that contains all the elements in X1 and X2.

Elements that are in both sets are included once. V-set union is defined as follows which

maintains the No-Dup-Elem property as discussed in Section 2.3.1.1 to ensure variation

preservation property defined in Definition 2.3.18. V-set union overloads the ∪ notation

used for plain set union.

Definition 2.3.19 (V-set union). The union of two v-sets is the union of their elements

with the disjunction of presence conditions if an element exists in both v-sets: Xv1∪Xv2 =

{xe1 | xe1 ∈ Xv1, @e2.x
e2 ∈ Xv2}∪{xe2 | xe2 ∈ Xv2, @e1.x

e1 ∈ Xv1}∪{xe1∨e2 | xe1 ∈
Xv1, x

e2 ∈ Xv2}. For example, {2e1 , 3e1} ∪ {2e2 , 4e4} = {2e1∨e2 , 3e1 , 4e4}.

Plain set union is formally encoded in Coq as elems union with set union from Coq

Standard Library which maintains the set property. V-set union is enocded as velems union

which is the composition of two operations nodupelem and set union. nodupelem ensures

that No-Dup-Elem property is maintained in the resultant variational set.
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(* Plain Set Union *)

Definition elems_union (A A’: elems) : elems := set_union string_eq_dec A A’.

(* Variational Set Union *)

Definition velems_union (A A’: velems) : velems := nodupelem (set_union

velem_eq_dec A A’).

Both plain and v-set union have the identity property described by the following lemmas.

Lemma 2.3.20 (Plain set union nil-r). For any plain set X, {} ∪X = X.

Lemma 2.3.21 (Plain set union nil-l). For any plain set X, X ∪ {} = X.

Lemma 2.3.22 (V-set union nil-r). For any variational set Xv, {} ∪Xv = Xv.

Lemma 2.3.23 (V-set union nil-l). For any variational set Xv, Xv ∪ {} ≡va Xv.

Above lemmas, that is, Lemma 2.3.20, 2.3.21 2.3.22 and 2.3.23 are encoded in Coq

as elems union nil r, elems union nil l, velems union nil r, velems union nil l respec-

tively and their respective proofs are included in Appendix A.2.1 and A.2.2.

(* Plain set union nil-r *)

Lemma elems_union_nil_r: forall A, atts_union A [] =set= A.

Proof. (See Appndix A.2.1 ). Qed.

(* Plain set union nil-l *)

Lemma elems_union_nil_l: forall A (H: NoDup A), elems_union [] A =set= A.

Proof. (See Appndix A.2.1 ). Qed.

(* V-set union nil-r *)

Lemma velems_union_nil_r : forall A (H: NoDupElem A), velems_union A [] = A.

Proof. (See Appndix A.2.2 ). Qed.

(* V-set union nil-l *)

Lemma velems_union_nil_l : forall A (H: NoDupElem A), velems_union [] A =vset= A.

Proof. (See Appndix A.2.2 ). Qed.

Similarly, the set intersection of two plain sets is a plain set that only includes ele-

ments present in both sets. V-set intersection extends the plain set intersection definition

to variational set maintaining both No-Dup-Elem and variation preservation property.

V-set intersection overloads the ∩ notation used for plain set intersection.

Definition 2.3.24 (V-set intersection). The intersection of two v-sets is a v-set of their

shared elements annotated with the conjunction of their presence conditions, that is,
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Xv1 ∩ Xv2 = {xe1∧e2 | xe1 ∈ Xv1, x
e2 ∈ Xv2}. For example, {1true, 2¬e1 , 3e2} ∩

{1e2 , 2e2 , 4e2} = {1e2 , 2¬e1∧e2}.

Formal encoding of plain set intersection elems inter uses set intersection from Coq

Standard Library which takes two plain sets and returns the intersected set. Variational

set intersection is encoded following the Definition 2.3.24 as velems inter that is shown

below.

(* Plain Set Intersection *)

Definition elems_inter (A A’: elems) : elems := set_inter string_eq_dec A A’.

(* Variational Set Intersection *)

Function velems_inter (A A’ : velems) {measure List.length A} : velems

:=

match A with

| nil ⇒ nil

| ae a e :: As ⇒ match existsbelem a A’ with

| false ⇒ velems_inter As A’

| true ⇒ let e’ := get_annot a A’ in

(ae a (e ∧ (F) e’) ) :: velems_inter As A’

end

end.

all:intros; simpl; eauto.

Defined.

Plain set intersection and v-set intersection have the identity property as shown below.

Lemma 2.3.25 (Plain set intersection nil-r). For any plain set X, {} ∩X = {}.

Lemma 2.3.26 (Plain set intersection nil-l). For any plain set X, X ∩ {} = {}.

Lemma 2.3.27 (V-set intersection nil-r). For any variational set Xv, {} ∩Xv = {}.

Lemma 2.3.28 (V-set intersection nil-l). For any variational set Xv, Xv ∩ {} = {}.

Lemma 2.3.25, 2.3.26 2.3.27 and 2.3.28 are encoded in Coq as elems inter nil r, elems inter nil l,

velems inter nil r, velems inter nil l respectively and their respective proofs are in-

cluded in Appendix A.2.4 and A.2.5.

(* Plain set intersection nil-r *)

Lemma elems_inter_nil_r: forall A, elems_inter A [] = [].

Proof. (See Appndix A.2.4 ). Qed.

(* Plain set intersection nil-l *)
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Lemma elems_inter_nil_l: forall A, elems_inter [] A = [].

Proof. (See Appndix A.2.4 ). Qed.

(* V-set intersection nil-r *)

Lemma velems_inter_nil_r : forall A, velems_inter A [] = [].

Proof. (See Appndix A.2.5 ). Qed.

(* V-set intersection nil-l *)

Lemma velems_inter_nil_l : forall A, velems_inter [] A = [].

Proof. (See Appndix A.2.5 ). Qed.

Finally, cross product of v-sets is defined as below. V-set cross product is not formal-

ized in Coq in this thesis. It is not required for any of the VDBMS correctness properties

specified and proved in this thesis. However, to ensure correctness of v-set cross product

definition, that is, that it correctly extends plain set cross product, future extension of

this work should formalize and prove the variation preservation property for v-set cross

product.

Definition 2.3.29 (V-set cross product). The cross product of two v-sets is a pair of

every two elements of them annotated with the conjunction of their presence conditions.

Xv1 ×Xv2 = {(x1, x2)e1∧e2 | xe11 ∈ X1, x
e2
2 ∈ X2}

V-set union and intersection can be extended to annotated v-set with semantic equiv-

alence relationship which requires following two operations to be defined on annotated

v-sets.

Add-annot operation allows adding more constraint on an already annotated vari-

ational v-set, in other words, annotates an already annotated set, Xv
e, with another

feature expression, e′, which is just a syntactic sugar for Xv
(e∧e′).

Definition 2.3.30 (Add-Annot). For any annotated v-set Qv = Xv
e and a feature

expression e′, (Add-Annot Qv e
′), denoted by Qvˆˆe

′
, is defined to be Xv

(e∧e′).

Add-annot is encoded in Coq as addannot as shown below.

Definition addannot (Q:vqtype) (e:fexp): vqtype := (fst Q, (snd Q) ∧ (F) e).

Notation " Q ^^ e " := (addannot Q e) (at level 70).

Push-annot operation annotates each variational element in a variational set, Xv,

with a given feature expression, e.
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Definition 2.3.31 (Push-annot). For a variational set Xv = {xv1
e1 , ...., xvk

ek} and a

feature expression e, (push-annot Xv e), denoted by (Xv < e), is defined as the v-set

{xv1
e1∧e, ...., xvk

ek∧e}.

Push-annot is encoded in Coq as push annot as shown below.

(** Push annotation into a variational element set *)

Fixpoint push_annot (A: velems) (m: fexp) : (velems):=

match A with

| nil ⇒ nil

| ae x e :: xs ⇒ (ae x (e ∧ (F) m)) :: push_annot xs m

end.

Notation " Q < e " := (push_annot Q e) (at level 70).

An annotated v-set can be converted to an equivalent non-annotated v-set using the

push-annot operation which is later used to extend v-set operations to annotated v-set

operations. Following lemma proves that above statement is correct with respect to the

v-set equivalence (Definition 2.3.12). Note that, equality itself is an equivalence relation.

Lemma 2.3.32. Any annotated variational set, Xv
e is equivalent to the v-set (push-

annot Xv e) with respect to their respective configured plain sets i.e. ∀c, AXJXv
eKc =

XJXv < eKc.

Lemma 2.3.32 is encoded in Coq as push annot correctness which is shown below

along with its formal proof.

Lemma push_annot_correctness A e c:

AX[[ (A, e)]] c = X[[ A < e]] c.

Proof. induction A. simpl.

destruct ( E[[ e]] c); reflexivity.

unfold push_annot; fold push_annot.

destruct a. simpl configVQtype.

simpl (AX[[_]]c) in IHA.

simpl (X[[_]]c). simpl (AX[[_]]c).

destruct (E[[ e]] c); destruct (E[[ f]] c); simpl;

try(eauto).

rewrite IHA. reflexivity.

Qed.

Now, v-set union is extended to annotated v-set union using push-annot operation.

Definition 2.3.33 (Annotated v-set union). The union of two annotated v-sets Xv1
e1

and Xv2
e2, denoted by Xv1

e1 ∪Xv2
e2, is defined as (Xv1 < e1) ∪ (Xv2 < e2).
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Annotated v-set intersection, however, is defined solely in terms of variational set inter-

section without any helper function.

Definition 2.3.34 (Annotated v-set intersection). The intersection of two annotated

v-sets, Xv1
e1 and Xv2

e2, denoted by Xv1
e1 ∩ Xv2

e2, is defined as (Xv1 ∩ Xv2, e2 ∧ e2)

where the later ∩ indicates the v-set intersection.

Note that, annotated v-set union and intersection again overload the ∪ and ∩ notations.

Annotated v-set union and intersection operations are encoded as avelems union vq and

avelems inter vq respectively.

(* Annotated Variational Set Union *)

Definition avelems_union_vq (Q Q’: avelems) : avelems :=

let (A, e) := Q in

let (A’, e’) := Q’ in

(velems_union (A < e) (A’ < e’), e ∨ (F) e’).

(* Annotated Variational Set Intersection *)

Definition avelems_inter_vq (Q Q’: avelems) : avelems :=

let (A, e) := Q in

let (A’, e’) := Q’ in

(velems_inter A A’, e ∧ (F) e’).

Both operations maintain the No-Dup-Elem and the variation preservation property.

Corresponding formal proofs are included in the Appendix A.2.7 and A.2.8.

2.3.1.3 Correctness of Variational Set Operations

V-set operations need to be variation preserving (Definition 2.3.18) to ensure that they

correctly extend corresponding plain set operations for variational sets. In this section, I

provide formal proofs of variation preservation for v-set union and intersection operations

defined in Section 2.3.1.2. Following theorem proves v-set union is variation preserving.

Theorem 2.3.35. For any two v-sets, Xv and Xv
′, ∀c. XJXv ∪ Xv

′Kc ≡set XJXvKc ∪
XJXv

′Kc.

Formal encoding of the above theorem is given below and corresponding mathematical

and formal proofs are included in the Appendix A.2.3.

Theorem velems_union_is_variation_preserving : forall A A’ c (HA: NoDupElem A)

(HA’: NoDupElem A’),
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X[[ velems_union A A’]]c =set= elems_union (X[[ A]] c) (X[[ A’]] c).

Proof. (See Appndix A.2.3 ). Qed.

Similarly, variation preservation property of v-set intersection is guaranteed by the

theorem below.

Theorem 2.3.36. For any two v-sets, Xv and Xv
′, ∀c. XJXv ∩ Xv

′Kc ≡set XJXvKc ∩
XJXv

′Kc.

Theorem 2.3.36 is encoded as velems intersection is variation preserving and its for-

mal proof is included in the Appendix A.2.6.

Theorem velems_intersection_is_variation_preserving : forall A A’ c (HA: NoDupElem

A)(HA’: NoDupElem A’),

X[[ velems_inter A A’]] c = elems_inter (X[[ A]] c) (X[[ A’]] c).

Proof. (See Appndix A.2.6 ). Qed.

Now that, we have formalized definitions and properties of v-set and v-set operations,

we are ready to formalize the variational schema and content of the variational database.

2.3.2 Variational Schema

Variational schemas extend plain relational database schemas to represent multiple plain

database schemas at once. A variational schema (v-schema), Sv, is an annotated set of

variational relation schemas {R1, ....., Rn}m. A variational relation schema ((v-relation

schema)) is an annotated set of variational attributes (v-attributes) preceded by a re-

lation name, r(Av)
e where Av = {av1, ....., avk} . Variational attributes are variational

elements defined in Section 2.3.1. Annotation of v-schema can be used to restrict v-

shcema configuration space to valid or expected configurations only. A v-schema with

proper annotation defines all valid schema variants of a variational database where the

annotation serves as the feature model of the respective VDB by capturing feature rela-

tionships of underlying application.

Formal encoding of v-schema is done in terms of variational set encoding (Section

2.3.1). Plain and variational elements defined and encoded in Section 2.3.1 are used as

plain and variational attributes. Plain relation schema relS is encoded as plain sets of

plain attributes and variational relation schema vrelS is encoded as annotated v-sets of

variational attributes. Both are accompanied with a relation name r, encoded as string.
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V-Relation Schema Configuration:

RJ.K : Rv → C→ R

RJ{r(Av)e}Kc =

{
r(XJAvKc), if EJeKc = true

r({}), otherwise

Figure 2.6: Variational Relation Schema(V-Relation Schema) Configuration.

V-Schema Configuration:

SJ.K : Sv → C→ S

SJ{Rv1, . . . , Rvn}mKc

=

{
{RJRv1Kc, . . . ,RJRvnKc}, if EJmKc = true

{}, otherwise

Figure 2.7: Variational Schema(V-Schema) Configuration.

(*relation name*)

Definition r : Type := string.

(* Plain Relation Schema *)

Definition relS : Type := (r * elems) % type

(* Variational Relation Schema *)

Definition vrelS : Type := (r * avelems) %type.

Plain schema schema are then plain sets of relation schemas and variational schemas

vschema are annotated v-sets of v-relation schemas.

(* Plain Schema *)

Definition schema : Type := set relS.

(* Variational Schema *)

Definition vschema : Type := ((set vrelS) * fexp) %type.

Configurations of v-relation schemas (Figure 2.6) and v-schemas (Figure 2.7) extend

from v-set configuration, (Figure 2.4) and generate plain relation schemas and plain

schemas respectively. V-relation schema configuration and V-schema configuration are

encoded in Coq as configVRelS and configVSchema respectively.

(* Variational Relation Schema Configuration R[]c *)
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Definition configVRelS (vr : vrelS) (c : config) : relS :=

let r := fst vr in

let VA := fst(snd vr) in

let e := snd (snd vr) in

if E[[ e]]c

then (r, (A[[VA]]c))

else (r, []).

Notation "R[[ vr ]] c" := (configVRelS vr c) (at level 50).

(* Variational Schema Configuration S[]c *)

Definition configVSchema (vs : vschema) (c : config) : schema :=

let VR := fst vs in

let m := snd vs in

if E[[ m]]c

then map (fun vr ⇒ (R[[vr]]c)) VR

else [].

Notation "S[[ vs ]] c" := (configVSchema vs c) (at level 50).

2.3.3 Variational Database Content

The content of a variational database, that is, the variational database instance is orga-

nized under the structure of its v-relation schemas. The pair of a v-relation schema and

its respective variational relation content (v-relation content) is called a variational table

(v-table). A v-relation content RCv of a v-relation schema Rv is a finite set of varia-

tional tuples or v-tuples {Uv1, ....., Uvm}. Each v-tuple Uvi,∀i∈[1,m] is an annotated tuple

of variational values (vv1, ....., vvk)
e that corresponds to respective v-relation schema Rv’s

set of v-attributes. A variational value is a plain value annotated with some presence

condition. Finally, the variational database instance (v-instance) is a set of v-tables

corresponding to the respective v-schema.

Plain value val and variational value vval are encoded in Coq as plain element elem

and variational element velem. Plain tuple tuple and variational tuple vtuple are encoded

as list of val and list of vval. plain and variational relation content are encoded as

rcontent and vrcontent which are set of tuple and set of vtuple respectively. Finally,

plain and variational table and instance are encodes as table, vtable, instance and

vinstance as shown below.

(* Plain Value *)

Definition val : Type := elem.
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Variational List Configuration:

VJ.K : Vv → C→ V

VJ(ve : Vv)Kc =

{
(v : VJVvKc), if EJeKc = true

VJVvKc, otherwise

VJ()Kc = ()

Figure 2.8: Variational List Configuration.

(* Variational Value *)

Definition vval : Type := velem.

(* Plain Tuple *)

Definition tuple : Type := list val.

(* Variational Tuple *)

Definition vtuple : Type := (list vval * fexp) % type..

(* Plain Relation Content *)

Definition rcontent : Type := set tuple.

(* Variational Relation Content *)

Definition vrcontent : Type := set vtuple.

(* Plain Relation Content *)

Definition table : Type := (relS * rcontent) %type.

(* Variational Relation Content *)

Definition vtable : Type := (vrelS * vrcontent) %type.

(* Plain Instance *)

Definition instance : Type := set table.

(* Variational Relation Content *)

Definition vinstance : Type := set vtable.

Variational list configuration is shown in Figure 2.8 and is encoded in Coq as configVElemList

as below.

(* Variational List Configuration V[]c *)

Fixpoint configVElemList (vl : list velem) (c : config) : list elem :=

match vl with

| nil ⇒ nil

| cons (ae a e) val ⇒ if semE e c
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V-Tuple Configuration:

UJ.K : Uv → C→ U

UJVveKc =

{
VJVvKc, if EJeKc = true

(), otherwise

V-Relation Content Configuration:

RCJ.K : RCv → C→ RC

RCJ{Uv1, . . . , Uvm}Kc = {UJUv1Kc, . . . ,UJUvmKc}

V-Table Configuration:

TJ.K : Tv → C→ T

TJ(Rv, RCv)Kc = (RJRvKc,RCJRCvKc)

VDB Instance Configuration:

IJ.K : Iv → C→ I
IJ{Tv1, . . . , Tvn}Kc = {TJTv1Kc, . . . ,TJTvnKc}

Figure 2.9: Variational Tuple(V-Tuple), Variational Relation Content(V-Relation Con-
tent), Variational Table(V-Table), and Variational Database(VDB) Instance Configura-
tions.

then (cons a (configVElemList val c))

else ( configVElemList val c )

end.

Notation "V[[ vl ]] c" := (configVElemList vl c) (at level 50).

Configurations of v-tuples, v-relation contents, v-tables, and VDB instances (Figure 2.9)

extend from variational list and variational set configuration. They are encoded in Coq

as configVTuple, configVRContent, configVTable, and configVDBInsatnce, respectively,

listed below.

(* V-Tuple Configuration U[]c *)

Definition configVTuple (vtup : vtuple) (c : config) : tuple :=

let VT := fst vtup in

let e := snd vtup in
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if E[[ e]]c

then (V[[VT]]c)

else [].

Notation "U[[ vu ]] c" := (configVTuple vu c) (at level 50).

(* V-Relation Content Configuration T[]c *)

Definition configVRContent (vrc : vrcontent) (c : config) : rcontent :=

map (fun v ⇒ (U[[v]]c)) vrc.

Notation "T[[ vrc ]] c" := (configVRContent vrc c) (at level 50).

(* (* V-Table Configuration T[]c *)

Definition configVTable (vt : vtable) (c : config) : table :=

let vrs := fst vt in

let vrc := snd vt in

(R[[ vrs ]]c, RC[[ vrc ]]c).

Notation "T[[ vt ]] c" := (configVTable vt c) (at level 50). *)

(* VDB Insatnce Configuration I[]c *)

Definition configVDBInsatnce (vins : vinstance) (c : config) :

instance :=

map (fun vt ⇒ ((R[[(fst vt)]]c), (T[[ (snd vt) ]]c))) vins.

Notation "I[[ vt ]] c" := (configVDBInsatnce vt c) (at level 50).
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Chapter 3: Formal Encoding of Variational Queries

The query language for variational database supports for variation as well. A variational

query, (v-query) expresses variational intent over a subset of relational database variants

represented by the variational database, that is, it can express same intent over several

variants or different intents over different variants. In other words, a variational query

represents multiple plain queries. To accommodate for variation, traditional relation

algebra (RA) is extended with choices [35, 15] and variational sets (Section 2.3.1) to

define variational relational algebra (VRA) (Section 3.1). VRA is more expressive than

RA but it comes with the cost of queries written in VRA, that is, v-queries being more

complex. Consequently, checking validity of v-queries is not trivial. Hence, VRA is

accompanied with a static type system (Section 3.2) that ensures that v-queries conform

to the underlying variational schema and to the variation encoded in the content of the

variational database. Formal correctness of VRA type system (Section 3.3) guarantees

typing of v-queries itself is correct.

3.1 Variational Relational Algebra(VRA)

VRA allows for variation in queries by incorporating choices and variational sets in

traditional RA. Choices are structures that introduce variation by providing multiple

alternatives with a selector. Variation is eliminated by evaluating the selector under

some configuration and selecting the respective alternative. Feature expressions are used

as selectors in the current context. As feature expressions are boolean expressions, using

them as selectors limits number of alternatives to two. The first alternative corresponds

to the true value of selector feature expression and the second one, to false value.

For example, e〈x, y〉 is a choice with two alternatives x and y with the selector feature

expression, e. For a given configuration c, if e evaluates to true, that is, EJeKc = true,

e〈x, y〉 is replaced by x, otherwise, it is replaced by y. The result of a query written in

VRA is a v-table, that is, a pair of v-relation schema and respective v-relation content.

The type of a valid v-query generated by VRA type system, discussed in Section 3.2,
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V-Condition Syntax:

θv ∈ Θv := b | a • k | a • a | ∼ θv | θv ∨ θv
| θv ∧ θv | e〈θv, θv〉

VRA Syntax:

qv ∈ Qv := r Variational Relation
| σθvqv Variational Selection
| πAv

eqv Variational Projection
| e〈qv, qv〉 Choice of Queries
| qv × qv Variational Cartesian Product
| qv ◦ qv Variational Set Operation
| ε Empty Relation

Figure 3.1: Variational Relational Algebra(VRA) Definition. • and ◦ denote comparison
(<,≤,=, 6=, >,≥) and v-set operations (∩,∪), respectively. b represents boolean values,
a denotes plain attributes and k denotes constants.

is a v-relation schema. Running a v-query on a variational database generates a set of

v-tuples, that is, the v-relation content that corresponds to its type. The result is formed

by combining them into a v-table.

VRA extends traditional operations in RA to support variation, and includes an

additional operation, called choice as well as an empty relation as shown in VRA syn-

tax in Figure 3.1. The variational selection (v-select) operation extends plain selection

operation with variational conditions (Figure 3.1). Variational conditions (v-condition)

are plain conditions extended with choice structure. In v-condition syntax, • denotes

comparison (<,≤,=, 6=, >,≥) and b, a, k represents boolean values, plain attributes and

constants, respectively. For example, the query σe〈a1=a2,a1=a3〉r selects v-tuples from r

that meet the condition, a1 = a2 and annotates them with e, and also, selects v-tuples

that satisfies a1 = a3 and annotates them with (∼ e). Note that, v-tuples are annotated

variational set. Annotating an already annotated set with a feature expression is done

by the add-annot operation defined in Definition 2.3.30. The variational projection op-

eration takes an annotated v-set of attributes as its parameter and projects attributes

present in the parameter with appropriate annotation. For example,the query π{ae1}e2 r

projects a from relation r and annotate the projected v-tuples with e1 ∧ e2. The choice



33

operation, e〈qv1, qv2〉 combines two v-queries qv1 and qv2 with a feature expression e.

Resulted v-tuples from qv1 are annotated with e and those from qv2, with (∼ e). In

practice, sometimes it is useful to have a choice of v-queries where one alternative does

nothing. To support this, VRA is augmented with an empty relation which generates

an empty v-query. The rest VRA operations are variational set operations that extend

respective plain set operations in RA as defined and discussed in Section 2.3.1.2. In VRA

syntax, ◦ denotes v-set union (∩) and intersection (∪) operations. The resulted set of

v-tuple from running any v-query on a variational database is paired with the v-query’s

type to form the resultant v-table. Note that, presence conditions of elements in the

result of a v-query is at least as specific as their respective presence conditions in the

underlying variational database.

Formal encoding of both plain and v-query is given below. Plain and variational

condition are encoded in Coq as cond and vcond. op describes the comparison operations

and bool, elem, nat denotes the boolean values, plain attributes and constants, respec-

tively. Plain and variational query are encoded as query and vquery. setop denotes the

v-set union and intersection operations.

Inductive op : Type :=

| eq | GTE | LTE | GT | LT | neq.

(* Plain Condition *)

Inductive cond : Type :=

| litCB : bool → cond

| elemOpV : op → elem → nat → cond

| elemOpA : op → elem → elem → cond

| negC : cond → cond

| conjC : cond → cond → cond

| disjC : cond → cond → cond.

(* Varitational condition *)

Inductive vcond : Type :=

| litCB_v : bool → vcond

| elemOpV_v : op → elem → nat → vcond

| elemOpA_v : op → elem → elem → vcond

| negC_v : vcond → vcond

| conjC_v : vcond → vcond → vcond

| disjC_v : vcond → vcond → vcond

| chcC : fexp → vcond → vcond → vcond.

Inductive setop : Type := union | inter.
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(* Plain Query*)

Inductive query : Type :=

| rel : relS → query

| proj : elems → query → query

| sel : cond → query → query

| prod : query → query → query

| setU : setop → query → query → query

| empty : query.

(* Variaitonal Query *)

Inductive vquery : Type :=

| rel_v : vrelS → vquery

| proj_v : avelems → vquery → vquery

| sel_v : vcond → vquery → vquery

| chcQ : fexp → vquery → vquery → vquery

| prod_v : vquery → vquery → vquery

| setU_v : setop → vquery → vquery → vquery

| empty_v : vquery.

Variational condition configuration (CJ.Kc) is shown in Figure 3.2. V-query con-

figuration (QJ.Kc), also in Figure 3.2, is performed with the help of feature expression

configuration (EJ.Kc), annotated v-set configuration (AXJ.Kc), v-relation schema config-

uration (RJ.Kc), and v-condition configuration (CJ.Kc), which are defined in Figures 2.2,

2.5, 2.6, and 3.2, respectively. Variational condition and variational query configura-

tions are encoded in Coq as configVQuery and configVCond, denoted by (Q[[.]]c) and

(C[[.]]c), respectively.

(*Variational Query Configuration Q[]c *)

Fixpoint configVQuery (vq : vquery) (c : config) : query :=

match vq with

| rel_v vr ⇒ rel (R[[ vr]]c)

| proj_v avelems vq ⇒ proj (AX[[avelems]]c) (configVQuery vq c)

| sel_v vc vq ⇒ sel (C[[ vc]]c) (configVQuery vq c)

| chcQ e vq1 vq2 ⇒ if E[[ e]]c then configVQuery vq1 c

else configVQuery vq2 c

| prod_v vq1 vq2 ⇒ prod (configVQuery vq1 c) (configVQuery vq2 c)

| setU_v setop vq1 vq2 ⇒ setU setop (configVQuery vq1 c) (configVQuery vq2 c)

| empty_v ⇒ empty

end.

Notation "Q[[ vq ]] c" := (configVQuery vq c) (at level 50).

(* Variational Condition Configuration C[]c *)

Fixpoint configVCond (vc : vcond) (c : config) : cond :=

match vc with

| litCB_v b ⇒ litCB b
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V-Condition Configuration:

CJ.K : Θv → C→ Θ

CJbKc = b

CJa • kKc = a • k
CJa1 • a2Kc = a1 • a2

CJ∼ θvKc =∼ CJθvKc
CJθv1 ∨ θv2Kc = CJθv1Kc ∨ CJθv2Kc
CJθv1 ∧ θv2Kc = CJθv1Kc ∧ CJθv2Kc

CJe〈θv1, θv2〉Kc =

{
CJθv1Kc, if EJeKc
CJθv2Kc, otherwise

VRA Configuration:

QJ.K : Qv → C→ Q

QJrKc = RJrKc = r

QJπAv
eqvKc = πAXJAv

eKcQJqvKc
QJσθvqvKc = σCJθvKcQJqvKc

QJe〈qv1, qv2〉Kc =

{
QJqv1Kc, if EJeKc
QJqv2Kc, otherwise

QJqv1 × qv2Kc = QJqv1Kc ×QJqv2Kc
QJqv1 ◦ qv2Kc = QJqv1Kc ◦QJqv2Kc
QJεKc = ε

Figure 3.2: Variational Condition(V-Condition) and Variational Relational Alge-
bra(VRA) Configuration. V-condition and v-query are assumed to be well-typed by
the configuration functions.
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| elemOpV_v o a k ⇒ elemOpV o a k

| elemOpA_v o a1 a2 ⇒ elemOpA o a1 a2

| negC_v vc ⇒ negC (configVCond vc c)

| conjC_v vc1 vc2 ⇒ conjC (configVCond vc1 c) (configVCond vc2 c)

| disjC_v vc1 vc2 ⇒ disjC (configVCond vc1 c) (configVCond vc2 c)

| chcC e vc1 vc2 ⇒ if semE e c then configVCond vc1 c

else configVCond vc2 c

end.

Notation "C[[ vc ]] c" := (configVCond vc c) (at level 70).

3.2 VRA Type System

VRA comes with a type system that statically checks if a v-query complies with the

underlying variational database. For example, let’s assume that we have a variational

database with v-schema Sv3 = {r
(
a1
e1 , a2

true
)e2}true. The π{a4true}true r is not a valid

query for Sv3 as its relation r does not have an attribute a4. The π{a1∼e1}true r is also

not a valid query Sv3 as it intents to project a1 from r for configurations c that EJ∼
e1Kc = true. But a1 is not present in the relation r under these configurations. However,

π{a1e1∧e2∧e3}true r is valid as a1 is present in r under the configurations c, EJe1∧e2∧e3Kc =

true. To be more explicit, a1 is present in the relation r for all configurations c that

EJe1∧e2Kc = true and for all configurations c, EJe1∧e2∧e3Kc = true→ EJe1∧e2Kc = true.

Presence conditions of any attribute, a in Qv of v-query πQvqv need to be at least as

specific as a’s presence condition in the result of qv.

Type of a v-query is a v-relation schema, result(Av)
e where result is the relation

name which is fixed for all v-queries. The annotated set of v-attributes (Av
e) describes

which v-attributes are present in the result of the v-query. As relation name is fixed for

all v-queries’ type, for brevity, types are considered to be annotated set of v-attributes

that are basically annotated v-set. Types of plain queries written in traditional RA are

V-Query Type Configuration:

QTJ.K : QTv → C→ QT

QTJQTvKc = AXJQTvKc

Figure 3.3: Variational Query(V-Query) Type Configuration.
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sets of plain attribute. Plain and variational query type are encoded in Coq as qtype

and vqtype, respectively. Variational query type (v-type) configuration(Figure 3.3) is

done with annotated variational set configuration (Figure 2.5) and is enocoded in as

configVQtype.

(* Plain Query Type *)

Definition qtype : Type := (elems) %type.

(* Variaitonal Query Type *)

Definition vqtype : Type := avelems.

(* Variational Query Type Configuration QT[]c *)

Definition configVQtype (vqt : vqtype) (c : config) : qtype := AX[[ vqt]]c.

Annotated v-set equivalence, subset property (Definitions 2.3.13, 2.3.17) as well as

its union and intersection operations (Definitions 2.3.33, 2.3.34) are renamed for v-query

type. V-query type equivalence, subset, union and intersection are denoted by ≡vqtype
,⊆,∪ and ∩, respectively.

Definition 3.2.1 (V-query type equivalence). := Annotated v-set equivalence

Definition 3.2.2 (V-query type subset). := Annotated v-set subset

Definition 3.2.3 (V-query type union). := Annotated v-set union

Definition 3.2.4 (V-query type intersection). := Annotated v-set intersection

V-query type equivalence, subset, union and intersection operations are encoded in

Coq as equiv vqtype, subset vqtype, vqtype union vq and vqtype inter vq.

(* V-Query Type Equivalence *)

Definition equiv_vqtype : relation vqtype := fun X X’ ⇒ X =avset= X’.

Infix "=vqtype=" := equiv_vqtype (at level 70) : type_scope.

(* V-Query Type subset *)

Definition subset_vqtype ( A A’: vqtype ) : Prop := subset_avelems.

(* V-Query Type Union *)

Definition vqtype_union_vq (Q Q’: vqtype) : vqtype := avelems_union_vq.

(* V-Query Type Intersection *)

Definition vqtype_inter_vq (Q Q’: vqtype) : vqtype := avelems_inter_vq.
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V-Query Typing Rules:

EmptyRelation-E

e, Sv � ε : {}false
Relation-E
r(Av)

er ∈ Sv e′ = er ∧ pc(Sv) sat
(
e ∧ e′

)
e, Sv � r : Av

e∧e′

Project-E

e, Sv � qv : Av
′e′ Qvˆˆe ⊆ Av ′e

′

e, Sv � πQv qv : Qvˆˆe

Select-E

e, Sv � qv : Av
e′ e,Av

e′ � θv

e, Sv � σθv qv : Av
e′

Choice-E
e ∧ e′, Sv � qv1 : Av1

e1 e∧ ∼ e′, Sv � qv2 : Av2
e2

e, Sv � e〈qv1, qv2〉 : Av1
e1 ∪Av2

e2

Product-E
e, Sv � qv1 : Av1

e1 e, Sv � qv2 : Av2
e2 Av1

e1 ∩Av2
e2 = {}

e, Sv � qv1 × qv2 : Av1
e1 ∪Av2

e2

SetOp-E
e, Sv � qv1 : Av1

e1 e, Sv � qv2 : Av2
e2 Av1

e1 ≡T Av2
e2

e, Sv � qv1 × qv2 : Av1
e1

Figure 3.4: Variational Relational Algebra(VRA) Typing Relation. The typing rule of a
join query is the combination of rules Select-E and Product-E.
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V-Condition Typing Rules (b: boolean tag, a: plain attribute, k: constant
value):

Boolean-C

e,Av ` b

AttOptVal-C

ae
′ ∈ Av k ∈ domI(a)

e,Av ` a • k

AttOptAtt-C
a1
e1 ∈ Av a2

e2 ∈ Av type(a1) = type(a2)

e,Av ` a1 • a2

Neg-C
e,Av ` θv
e,Av `∼ θv

Conjunction-C
e,Av ` θv1 e,Av ` θv2

e,Av ` θv1 ∧ θv2

Disjunction-C
e,Av ` θv1 e,Av ` θv2

e,Av ` θv1 ∨ θv2

Choice-C
e ∧ e′, Av ` θv1 e∧ ∼ e′, Av ` θv2

e,Av ` e′〈θv1, θv2〉

Figure 3.5: Variational Condition(V-Condition) Typing Relation.

Typing relations of VRA are defined as a set of inference rule as in Figure 3.4. A

typing relation e, Sv � qv : Av
e′ states that in variational context e with underlying

v-schema Sv, v-query qv has type Av
e′ . If a v-query doesn’t have a type, it is not a valid

query. Type system keeps track of the variation encoded in v-queries with the variational

context, e.

The Relation-E rule states that in a variational context e with v-schema Sv with

feature model pc(Sv), a relation r(Av)
er that is contained in Sv has type Av

(e′∧e)where

e′ = er ∧ pc(Sv) and (e ∧ e′) is statisfiable. Note that, pc(Sv) returns the feature model,

that is, the presence condition of the variational schema Sv.

The Project-E rule states that, in a variational context, e with v-schema Sv, as-

suming a v-query qv has type Av
′e′ , the projection v-query πQv qv has type Qvˆˆe given

that Qvˆˆe ⊆ Av
′e′ . Remember that, variational projection query’s parameter, Qv is

an annotated v-set, ˆˆ is the add-annot operation (Definition 2.3.30) that annotates an

already annotated set, and ⊆ is the annotated v-set subset operation (Definition 2.3.17).

The subset condition Qvˆˆe ⊆ Av ′e
′

in the rule ensures that all plain attributes in Qv are
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present in Av
′e′ with such presence conditions that in each query variant of πQv qv, to

be projected plain attribute set has the subset relationship with the set it is projecting

from.

The Select-E rule states that, in a variational context e with v-schema Sv, assuming

a v-query qv has type Av
e′ , the selection v-query σθv qv has the same type, given that, θv is

well-formed in the same variational context e with respect to Av
e′ , that is, e,Av

e′ � θv.

A v-condition θv is well-formed in a variational context e with respect to a v-set of

attributes Av, that is, e,Av � θv if and only if θv has the expected syntax and the plain

attributes present in the θv are also present in Av.

The rule Choice-E states that, in a variational context e with v-schema Sv, the type

of choice of two v-queries qv1 and qv2, denoted by e〈qv1, qv2〉, is the union of qv1 and

qv2’s types in the variational contexts (e∧ e′) and (e∧ ∼ e′), respectively, with the same

v-schema Sv, given that, qv1 and qv2 are valid in these contexts. In variational contexts

for qv1 and qv2, e is conjuncted with e′ and ∼ e′ respectively as, in the choice structure,

qv1 is selected when EJe′Kc = true and qv2 is selected when EJe′Kc = false.

The rule Product-E sates that, in a variational context, e with v-schema Sv, the

type of the product of two v-queries qv1 and qv2, denoted by (qv1 × qv2), is the union of

the types of qv1 and qv2 (Definition 3.2.3) in the same context with the same schema.

qv1 and qv2’s types are needed to be disjoint.

Finally, the SetOp-E rule defines typing rule for v-set operation queries which states

that, in a variational context e with v-schema Sv, assuming types of two v-queries qv1

and qv2 to be Av1
e1 and Av2

e2 respectively, type of any v-set operation query among

them, denoted by (qv1 ◦ qv2) is Av1
e1 , given that, Av1

e1 ≡vqtype Av2
e2 .

VRA type system is encoded in Coq as inductive proposition, vtype which is included

below.

(* ---------------------------------------------------------------

| Type of variational query ( |= )

---------------------------------------------------------------*)

Inductive vtype :fexp → vschema → vquery → vqtype → Prop :=

(* -- EMPTYRELATION-E -- *)

| EmptyRelation_vE : forall e S {HndpRS:NoDupRn (fst S)}

{HndpAS: NODupElemRs S},

vtype e S (empty_v) ([], litB false)

(* -- RELATION-E -- *)
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| Relation_vE : forall e S {HndpRS:NoDupRn (fst S)} {HndpAS:NODupElemRs S}

rn {Hrn: empRelInempS rn}A {HA: NoDupElem A} e’,

InVR (rn, (A, e’)) S →
sat (e ∧ (F) e’) →
vtype e S (rel_v (rn, (A, e’ ))) (A, (e ∧ (F) e’))

(* -- PROJECT-E -- *)

| Project_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq {HndpvQ: NoDupElemvQ vq} e’ A’ {HndpAA’: NoDupElem A’}

Q {HndpQ: NoDupElem (fst Q)},

vtype e S vq (A’, e’) →
subset_vqtype (Q^^e) (A’, e’) →
vtype e S (proj_v Q vq) (Q^^e)

(* -- SELECT-E -- *)

| Select_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq {HndpvQ: NoDupElemvQ vq} A {HndpAA: NoDupElem A} e’ vc,

vtype e S vq (A, e’) →
{ e, (A, e’) |- vc } →
vtype e S (sel_v vc vq) (A, e’)

(* -- CHOICE-E -- *)

| Choice_vE: forall e e’ S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2: NoDupElemvQ

vq2} A1 {HndpAA1: NoDupElem A1} e1 A2 {HndpAA2: NoDupElem

A2} e2,

vtype (e ∧ (F) e’) S vq1 (A1, e1) →
vtype (e ∧ (F) ( (F) e’)) S vq2 (A2, e2) →
vtype e S (chcQ e’ vq1 vq2) (vqtype_union_vq (A1, e1) (A2, e2))

(* -- PRODUCT-E -- *)

| Product_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2:

NoDupElemvQ vq2} A1 {HndpAA1: NoDupElem A1} e1 A2

{HndpAA2: NoDupElem A2} e2 ,

vtype e S vq1 (A1, e1) →
vtype e S vq2 (A2, e2) →
vqtype_inter_vq (A1, e1) (A2, e2) =vqtype= (nil, litB false) →
vtype e S (prod_v vq1 vq2) (vqtype_union_vq (A1, e1) (A2, e2))

(* -- SETOP-E -- *)

| SetOp_vE: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2: NoDupElemvQ vq2}

A1 {HndpAA1: NoDupElem A1} e1 A2 {HndpAA2: NoDupElem A2} e2

op,

vtype e S vq1 (A1, e1) →
vtype e S vq2 (A2, e2) →
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equiv_vqtype (A1, e1) (A2, e2) →
vtype e S (setU_v op vq1 vq2) (A1, e1).

Notation "{ e , S |= vq | vt }" := (vtype e S vq vt) (e at level 200).

(*---------------------------------------------------------------

| Type of (|-c ) variational condition

---------------------------------------------------------------*)

Inductive vcondtype :fexp → vqtype → vcond → Prop :=

| litCB_vC : forall e Q b,

vcondtype e Q (litCB_v b)

| elemOpV_vC : forall e Q o a k,

(exists e : fexp, In (ae a e) ((fst Q) < (snd Q)) ∧ sat(e)) →
vcondtype e Q (elemOpV_v o a k)

| elemOpA_vC : forall e Q o a1 a2,

(exists e1 : fexp, In (ae a1 e1) ((fst Q) < (snd Q)) ∧ sat(e1)) →
(exists e2 : fexp, In (ae a2 e2) ((fst Q) < (snd Q)) ∧ sat(e2)) →
vcondtype e Q (elemOpA_v o a1 a2)

| NegC_vC : forall e Q c,

vcondtype e Q c →
vcondtype e Q (negC_v c)

| ConjC_vC : forall e Q c1 c2,

vcondtype e Q c1 →
vcondtype e Q c2 →
vcondtype e Q (conjC_v c1 c2)

| DisjC_vC : forall e Q c1 c2,

vcondtype e Q c1 →
vcondtype e Q c2 →
vcondtype e Q (disjC_v c1 c2)

| ChcC_vC : forall e e’ Q c1 c2,

vcondtype (e ∧ (F) e’) Q c1 →
vcondtype (e ∧ (F) ( (F) e’)) Q c2 →
vcondtype e Q (chcC e’ c1 c2).

Notation "{ e , Q |- vc }" := (vcondtype e Q vc) (e at level 200).

Note that, InVR in Relation vE rule is the Coq encoding of InVR in Definition 3.2.5.

InVR r(Av)
e′ Sv states that there exists e such that r(Av)

e is in Sv, that is, r(Av)
e ∈ Sv

and e′ encodes both presence condition of relation r and feature model of v-schema Sv,
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that is, e′ = e ∧ pc(Sv).

Definition 3.2.5 (InVR). InVR r(Av)
e′ Sv states that ∃e.r(Av)e ∈ Sv and e′ = e ∧

pc(Sv).

Below is the Coq encoding of InVR, encoded as InVR.

(* InVR *)

Definition InVR (vr:vrelS) (vs:vschema) : Prop :=

let rn := getr vr in

let vas := getvs vr in

let e’:= getf vr in

exists e, In (rn, (vas, e)) (fst vs) ∧ (e ∧ (F) (snd vs)) = e’.

Consequently, in Relation vE rule, e’ in InVR (rn, (A, e’)) S encodes both presence

condition of relation r and feature model of v-schema Sv. Other typing rules in Coq

encoding are straightforward encoding of typing rules in Figure 3.4.

The function used to compute the type of plain queries is denoted by . || = . and its

definition and Coq encoding, type is included in Appendix B.1. S || = q returns the

type of the plain query q with underlying pain schema S in RA type system.

3.3 Correctness of VRA Type System

qv Av
e

q A

typev

QJ.Kc QTJ.Kc
type

The VRA type system extends the RA type system to varia-

tional queries. In order to be correct with regard to the RA’s

type system, it must preserve variation encoded in a v-query. In

other words, under same configuration, the configured v-type of

a v-query in VRA type system should be equivalent to the plain type of the configured

v-query in RA type system. For example, if in a variational context e with v-schema Sv,

a v-query qv has v-type Av
e′ , then for all configurations c, with plain schema SJSvKc, con-

figured v-query, QJqvKc must have a plain type equivalent to QTJAve
′
Kc. In the diagram

on the right, typev refers to VRA type system, that is, e, Sv � qv : Av
e′ and type refers to

RA type system, that is, S || = q : A where S = SJSvKc. Also, vertical arrows represent

corresponding configuration functions. Theorem 3.3.1 states the variation preservation

property of VRA type system.

Theorem 3.3.1. If a v-query qv has v-type Av
e′, then for all configurations c, QJqvKc

has equivalent type to QTJAve
′
Kc i.e.,
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∀c. {e, Sv � qv : Av
e′} → SJSvKc || = QJqvKc ≡set QTJAve

′
Kc.

Theorem 3.3.1 is encoded in Coq as variation preservation and its formal proof is

included in the Appendix B.2.

Theorem variation_preservation : forall e S vq A’ e’,

{ e , S |= vq | (A’, e’) } →
forall c, E[[e]]c = true →

(S[[ S]]c) ||= (Q[[ vq]]c) =set= QT[[ (A’, e’)]]c.

Proof. (See Appndix B.2 ). Qed.

Together with RA’s type safety [30], variation preserving property of VRA type system

implies that VRA type system is type safe as well.

One important thing to note here is that the variational conditions typing rules (Fig-

ure 3.5) are encoded as it is in [5]. However, the rules AttOptVal-C and AttOptAtt-C

are not variation preserving over variation elimination with respect to respective plain

condition typing rules. The problem is that these rules do not take variation associ-

ated with attributes in the variational schema of the VDB into account. One way they

could be fixed to make them variation preserving is to require attribute references to be

wrapped in choices that encode the variation information from the schema. This change

is reflected in the following modified rules for variational conditions.

AttOptVal-C

ae
′ ∈ Av k ∈ domI(a)

e,Av ` e′〈a • k, false〉

AttOptAtt-C

a1
e1 ∈ Av a2

e2 ∈ Av type(a1) = type(a2)

e,Av ` (e1 ∧ e2)〈a1 • a2, false〉

However, this modification would make using v-queries more cumbersome since it re-

quires many extra choices. Instead, the problem is solved by changing the corresponding

plain condition typing rules (Appendix B.1) to make the Select-E rule in VRA variation

preserving with respect to our modified version of RA.
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Chapter 4: Formal Encoding of Implicitly Annotated Variational

Queries

VDBMS provides an implicit way of writing v-queries to relieve the user from providing

information that can be inferred automatically. When writing an implicitly annotated

v-query, users do not need to include variation that is already encoded in the VDB and in

the sub-queries and only required to include any further constraint they want to impose,

if any. Recall that as stated in Section 3.2, presence conditions of any attribute, a in Qv

of v-query πQvqv need to be at least as specific as a’s presence condition in the type of qv

where type of qv describes v-attributes present in its result. This requires user to repeat

variation when writing v-queries. For example, in the example VDB used in Section 3.2,

the v-schema is described by Sv3 = {r{a1
e1 , a2

true}e2}true and qv3 = π{a1e1∧e2∧e3}true
r

is a valid variational projection query with respect to Sv3. Note that, qv3 includes a’s

presence condition (e1 ∧ e2) in r. If implicit annotation is allowed, qv3 can be written

as πa1e3 r omitting this information. Let’s consider another example. Assume a VDB

with v-schema Sv4 = {r{a1
e1 , a2

e2}e3}true. qv4 = π{a1true}true r and qv5 = π{a1e4}true r

are valid implicitly annotated v-queries with respect to Sv4. The explicitly annotated

versions of qv4 and qv5 are π{a1e1∧e2∧e3}true r and π{a1e1∧e2∧e3∧e4}true r respectively. qv6 =

σec〈a1=a2,true〉 is another valid implicitly annotated v-query with respect to Sv4. The

explicitly annotated version of qv6 is σe1∧e2∧e3∧ec〈a1=a2,true〉.

The implicitly annotated variational query language has the same syntax as VRA

as in Figure 3.1. However, to type check an implicitly annotated v-query, the type

system needs to account for implicitness. Type system for implicitly annotated v-query,

called implicit VRA type system is provided in Section 4.1. In VDMS, type checked

implicitly annotated v-queries get explicitly annotated by the system with a function,

called explicitly annotating function as described in Section 4.2. Finally, Section 4.3

provides correctness theorems and corresponding formal proofs of implicit VRA type

system with respect to VRA type system.
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4.1 VRA Type System for Implicitly Annotated V-Queries

VRA type system for implicitly annotated v-queries is similar to the VRA type system

except for the fact that it can account for implicitness. The type generated by implicit

VRA type system are explicitly annotated. Typing rules of implicit VRA system are

shown in Figure 4.1 and corresponding formal encoding, vtypeImp is in Appendix C.1.

The rule Relation-E is same as before. It gets the type of relation r from v-schema

Sv, hence the type is explicitly annotated, that is, variation encoded in the v-schema is

present in the type.

The rule Project-E is however different from the that in VRA type system. The

subset condition is replaced by a more lenient property, called subsumption, defined in

the following Definition 4.1.1.

Definition 4.1.1 (V-set subsumption). The v-set Xv1 is subsumed by the v-set Xv2,

denoted by Xv1 ≺ Xv2, iff ∀xe1 ∈ Xv1. sat(e1) → ∃e2. x
e2 ∈ Xv2 and sat(e1 ∧ e2),

i.e., for any plain element x in Xv1 with presence condition e1, if e1 is satisfiable then x

must also in Xv2 with such presence condition that its conjuction with e1 is satisfiable.

For example, {2true, 3true} ≺ {2true, 3f1 , 4true} where sat(f1), however, {2true, 3f1} 6≺
{2true, 3∼f1}.

V-set subsumption is encoded in Coq as subsump velems as follows.

(* Variational Set Subsumption *)

Definition subsump_velems (A A’: velems) :Prop :=

forall x e, In (ae x e) A ∧ sat e → exists e’, In (ae x e’) A’ ∧ sat(e ∧ (F) e’).

V-set subsumption is extended to v-query type, that is, to annotated v-set in the following

Definition 4.1.2. This is called V-query type subsumption.

Definition 4.1.2 (V-query type subsumption). The v-query type Xv1
e1 is subsumed by

the v-set Xv2
e2, denoted by Xv1

e1 ≺ Xv2
e2, iff ∀xex1 ∈ Xv1. sat(e)1 ∧ ex1 → ∃e2. x

ex2 ∈
Xv2 and sat(e1 ∧ ex1 ∧ ex2 ∧ e2),

V-query type subsumption is encoded in Coq as subsump vqtype as listed below.

(* V-query Type Subsumption *)

Definition subsump_vqtype ( X X’: vqtype) : Prop :=

let (A, ea) := X in

let (A’, ea’) := X’ in

forall x e, In (ae x e) A ∧ sat (e ∧ (F) ea) →
exists e’, In (ae x e’) A’ ∧ sat (e ∧ (F) ea ∧ (F) e’ ∧ (F) ea’).
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Implicit V-Query Typing Rules:

EmptyRelation-E

e, Sv ` ε : {}false
Relation-E
r(Av)

er ∈ Sv e′ = er ∧ pc(Sv) sat
(
e ∧ e′

)
e, Sv ` r : Av

(e′∧e)

Project-E

e, Sv ` qv : Av
′e′ Qv ≺ Av ′e

′

e, Sv ` πQv qv : Qv ∩Av ′e
′

Select-E

e, Sv ` qv : Av
e′ e,Av

e′ ` θv
e, Sv ` σθv qv : Av

e′

Choice-E
e ∧ e′, Sv ` qv1 : Av1

e1 e∧ ∼ e′, Sv ` qv2 : Av2
e2

e, Sv ` e〈qv1, qv2〉 : Av1
e1 ∪Av2

e2

Product-E
e, Sv ` qv1 : Av1

e1 e, Sv ` qv2 : Av2
e2 Av1

e1 ∩Av2
e2 = {}

e, Sv ` qv1 × qv2 : Av1
e1 ∪Av2

e2

SetOp-E
e, Sv ` qv1 : Av1

e1 e, Sv ` qv2 : Av2
e2 Av1

e1 ≡T Av2
e2

e, Sv ` qv1 × qv2 : Av1
e1

Implicit V-Condition Typing Rules (b: boolean tag, a: plain attribute, k:
constant value):

Boolean-C

e,Av ` b

AttOptVal-C

ae
′ ∈ Av k ∈ domI(a)

e,Av ` a • k

AttOptAtt-C
a1
e1 ∈ Av a2

e2 ∈ Av type(a1) = type(a2)

e,Av ` a1 • a2

Neg-C
e,Av ` θv
e,Av `∼ θv

Conjunction-C
e,Av ` θv1 e,Av ` θv2

e,Av ` θv1 ∧ θv2

Disjunction-C
e,Av ` θv1 e,Av ` θv2

e,Av ` θv1 ∨ θv2

Choice-C
e ∧ e′, Av ` θv1 e∧ ∼ e′, Av ` θv2

e,Av ` e′〈θv1, θv2〉

Figure 4.1: Implicit Variational Relational Algebra(VRA) and Variational Condition(V-
Condition) Typing Relation. The typing rule of a join query is the combination of rules
Select-E and Product-E.
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Now, in a variational context, e with v-schema Sv, assuming a v-query qv has type Av
′e′ ,

the projection v-query πQv qv has type Qv ∩ Av ′e
′
, given that, Qv ≺ Av

′e′ . Qv ≺ Av
′e′

ensures that plain attributes inQv will be in some variants of Av
′e′ . The type of sub-query

qv is explicitly annotated, therefore, taking intersection of to be projected attributes Qv

with qv’s type explicitly annotates the plain attributes in Qv and also filters out any

plain attributes from Qv that are not present qv’s type. Note that, it doesn’t check if Qv

is subset of qv’s type. However, it doesn’t affect the typing, that is, typing of projection

operation by Implicit VRA type system is still equivalent to its typing in VRA type

system as by definition of annotated v-set intersection (Definition 2.3.34), Qv ∩ Av ′e
′

is

subset of Av
′e′ . Hence, the type is correct.

However, the actual reason for subset check in VRA type system is to ensure that

all plain attributes in Qv are present in Av
′e′ with such presence conditions that in all

query variants of qv, to be projected plain set has the subset relationship with the set it

is projecting from. To have subset relationship in all query variants, presence conditions

of plain attributes in Qv need to be at least as specific as their presence conditions in

Av
′e′ . The implicitly annotated v-queries goes through an additional step of explicitly

annotating of v-queries right after the type check (Section 4.2) which replaces Qv in

πQv qv with Qv ∩Av ′e
′

that maintains the subset property.

The rest of the operations generate types directly from the sub-queries types which

are explicitly annotated. Hence, they do not require any changes from VRA type system.

In essence, implicit VRA type system is allows more flexibility on the user side that

VDBMS is equipped to handle to produce valid v-queries. Correctness of implicit VRA

type system and explicitly annotating function with respect to VRA type system (Section

4.3) guarantees that the process works as expected.

4.2 Explicitly Annotating V-Queries

Implicitly annotated v-queries makes VDBMS easier to use by relieving user from re-

peating variation information that is already encoded in the v-schema and sub-queries.

However v-queries still need to be explicitly annotated by the system otherwise when

decoupled from the v-schema, v-queries would lose variation information. Teh explicit an-

notation is done immediately after v-queries pass through the implicit VRA type system

and before they are sent to SQL generator. The function that VDMS uses to explicitly
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Explicitly Annotating V-Queries:

b.cSv : Q→ Sv → Q

brcSv = r

bσθvqvcSv = σθvbqvcSv

bπQvqvcSv = π
Qv∩Av

′e′ bqvcSv where Sv ` bqvcSv : Av
′e′

bqv1 × qv2cSv = bqv1cSv × bqv2cSv

be〈qv1, qv2〉cSv = e〈bqv1cSv , bqv2cSv〉
bqv1 ◦ qv2cSv = bqv1cSv ◦ bqv2cSv

bεcSv = ε

Figure 4.2: Explicitly Annotating Implicitly Annotated Variational Queries(V-Queries)
w.r.t. Variational Schema(V-Schema). V-queries passed to this function are assumed to
be well-typed.

annotate a v-query qv with respect to v-schema Sv, denoted by bqvcSv , is in Figure 4.2.

The function returns relation queries as they are. Parameter Qv of the projection v-

query πQvqv gets intersected with the type of its explicitly annotated sub-query bqvcSv .

Sv ` bqvcSv : Av
′e′ describes the type of bqvcSv in an empty variational context with v-

schema Sv. In the resulted explicitly annotated projection v-query π
Qv∩Av

′e′ bqvcSv , the

parameter Qv ∩Av ′e
′

is subset of and explicitly annotated with respect to bqvcSv ’s type.

For other v-queries, sub-queries are explicitly annotated within the same structure.

The explicitly annotating function is encoded in Coq as ImptoExp as below.

(* Explicitly Annotating Implicitly Annotated V-Queries w.r.t. V-Schema. *)

Fixpoint ImptoExp (vq: vquery) (vs:vschema) : (vquery) :=

match vq with

| (empty_v) ⇒ empty_v

| (rel_v (rn, (A_, e_’))) ⇒ let vr := (findVR rn vs) in

(rel_v (rn, (getvs vr, getf vr)))

| (proj_v Q vq) ⇒ let vq_s := (ImptoExp vq vs) in

let (A’, e’) := vtypeImpNOTC (litB true) vs vq_s in

let QinterQ’ := vqtype_inter_vq Q (A’, e’) in

proj_v QinterQ’ vq_s

| (chcQ e’ vq1 vq2) ⇒ chcQ e’ (ImptoExp vq1 vs) (ImptoExp vq2 vs)

| (prod_v vq1 vq2) ⇒ prod_v (ImptoExp vq1 vs) (ImptoExp vq2 vs)

| (setU_v op vq1 vq2) ⇒ setU_v op (ImptoExp vq1 vs) (ImptoExp vq2 vs)

| (sel_v c vq) ⇒ sel_v c (ImptoExp vq vs)
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end.

Notation "[ vq ] vs" := (ImptoExp vq vs) (at level 90, left associativity).

In the formal encoding, explicitly annotating function ImptoExp uses vtypeImpNOTC to

get the type of v-queries. Implicit VRA typing rules are formally encoded as inductive

propositions. Following lemma proves that vtypeImpNOTC provides the same type as the

implicit VRA type system for any type-checked v-query.

Lemma vtypeImpNOTC_correct : forall e vs vq vt {HRn: NoDupRn (fst vs)},

{e, vs |- vq | vt} → (vtypeImpNOTC e vs vq) = vt.

Proof.

intros. induction H;

try(simpl vtypeImpNOTC);

try(rewrite IHvtypeImp);

try(rewrite (IHvtypeImp1 HRn); rewrite (IHvtypeImp2 HRn));

try(reflexivity); try(assumption);try(assumption).

- apply InVR_findVR in H.

rewrite H. unfold getvs. unfold getf.

simpl. reflexivity. assumption.

Qed.

Correctness of explicitly annotating function with respect to implicit VRA type sys-

tem is formalized in the next Section 4.3.

4.3 Correctness of Implicit VRA Type System

Implicit VRA type system’s correctness is formalized with respect to the VRA type

system that if an implicitly annotated v-query is valid, that is, has a type in implicit

VRA type system then its explicitly annotated version is valid in VRA type system

with an equivalent type. Theorem 4.3.1 mathematically states the above statement.

Remember that, (`) indicates implicit VRA type system and (�) indicates VRA type

system.

Theorem 4.3.1. In a variation context e with v-schema Sv, for all v-queries qv,

{e, Sv ` qv : A} → ∃A′, {e, Sv � bqvcSv : A′} and A ≡vqtype A′

Theorem 4.3.1 can be proved with two lemmas. The first lemma (Lemma 4.3.2)

proves correctness of explicitly annotating function with respect to implicit VRA type

system. For any v-query qv, if it has a type in implicit VRA type system, then its

explicitly annotated version bqvcSv has an equivalent type in implicit VRA type system.
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Lemma 4.3.2. In a variation context e with v-schema Sv, for all v-queries qv,

{e, Sv ` qv : A} → ∃A′, {e, Sv ` bqvcSv : A′} and A ≡vqtype A′

Lemma 4.3.2 is encoded as ImpQ ImpType ExpQ ImpType in Coq and the respective formal

proof is included in Appendix C.2.1

Lemma ImpQ_ImpType_ExpQ_ImpType e S q A:

{ e , S |- q | A } →
exists A’, { e , S |- [q]S | A’ } ∧ A =vqtype= A’.

Proof. (See Appndix C.2.1 ). Qed.

The second lemma states that any explicitly annotated v-query’s validity in implicit

VRA type system implies its validity in VRA type system with an equivalent type.

Lemma 4.3.3. In a variation context e with v-schema Sv, for all v-queries qv,

{e, Sv ` bqvcSv : A} → ∃A′, {e, Sv ` bqvcSv : A′} and A ≡vqtype A′

Lemma 4.3.3 is encoded as ExpQ ImpType ExpQ ExpType in Coq and the respective formal

proof is included in Appendix C.2.2

Lemma ExpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):

{ e , S |- [q]S | A } →
exists A’, { e , S |= [q]S | A’ } ∧ A =vqtype= A’.

Proof. (See Appndix C.2.2 ). Qed.

Implicit VRA type system correctness theorem (Theorem 4.3.1) is a corollary of

these two lemmas (Lemma 4.3.2 and 4.3.3). Theorem 4.3.1 is encoded in Coq as

ImpQ ImpType ExpQ ExpType and its formal proof is given below.

Theorem ImpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):

{ e , S |- q | A } →
exists A’, { e , S |= [q]S | A’ } ∧ A =vqtype= A’.

Proof. intro HImp.

(*

HImp : {e, S |- q | A}

--------------------------------------

exists A’ : vqtype, {e, S |= [q] S | A’} ∧ A =vqtype= A’

*)

(* From Lemma 4.3.2,

HImp:{ e , S |- q | A } → HExpQ:{ e , S |- [q]S | A’’ } ∧ A =vqtype= A’’

*)

apply ImpQ_ImpType_ExpQ_ImpType in HImp as HExpQ.

destruct HExpQ as [A’’ [HExpQ HEqiv’’] ].
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(* From Lemma 4.3.3,

HExpQ:{ e , S |- [q]S | A’’ } → HExp:{ e , S |= [q]S | A’ } ∧ A’’=vqtype=A’

*)

apply ExpQ_ImpType_ExpQ_ExpType in HExpQ as HExp; try auto.

destruct HExp as [A’ [HExp HEqiv’] ].

exists A’.

(*

HExp : {e, S |= [q] S | A’}

HEqiv’ : A’’ =vqtype= A’

HEqiv’’ : A =vqtype= A’’

--------------------------------------

{e, S |= [q] S | A’} ∧ A =vqtype= A’

*)

split.

(* Goal: {e, S |= [q] S | A’} *)

apply HExp.

(* Goal: A =vqtype= A’ *)

transitivity (A’’); assumption.

Qed.

Theorem 4.3.1 along with variation preserving theorem for VRA type system (Theroem

3.3.1) implies that Implicit VRA type system is also variation preserving. Theorem 4.3.4

below states the variation preservation property for Implicit VRA type system.

Theorem 4.3.4. If a v-query qv has v-type A, then for all configurations c, QJbqvcSvKc
has equivalent type to QTJAKc, i.e. {e, Sv ` qv : A} → SJSvKc || = QJbqvcSvKc ≡set QTJAKc.

Above theorem is encoded in Coq as variation preservation Imp and its formal proof

applies Theorem 4.3.1 and 3.3.1 in its premise subsequently to get to the conclusion.

Theorem variation_preservation_Imp e S q A (HndpQ: NoDupElemvQ q):

{ e , S |- q | A } →
forall c, E[[e]]c = true →

||= (Q[[ [q]S]]c) =set= QT[[ A]]c.

Proof. intros HImp c He.

(*

HImp : {e, S |- q | A}

--------------------------------------

||= (Q[[ [q] S]] c) =set= QT[[ A]] c

*)

(* From Theroem 4.3.1,

HImp : {e, S |- q | A} → {e, S |= [q] S | A’} ∧ A =vqtype= A’ *)

apply ImpQ_ImpType_ExpQ_ExpType in HImp; try auto.
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destruct HImp as [A’ [HExpQ HEquiv] ].

(* From Theorem 3.3.1,

{e, S |= [q] S | A’} → HExpQ : ||= (Q[[ [q] S]] c) =set= QT[[ A’]] c *)

destruct A’ as (A’, e’).

eapply variation_preservation with (c:=c) in HExpQ;

try auto.

(* A =vqtype= A’ → HEquiv : QT[[ A]] c =set= QT[[ A’]] c *)

apply configVQtype_equiv with (c:=c) in HEquiv.

(*

HExpQ : ||= (Q[[ [q] S]] c) =set= QT[[ A’]] c

HEquiv : QT[[ A]] c =set= QT[[ A’]] c

--------------------------------------

||= (Q[[ [q] S]] c) =set= QT[[ A]] c

*)

symmetry in HEquiv.

transitivity (QT[[ A’]] c); auto.

Qed.



54

Chapter 5: Related Work

Variational databases were developed in previous work [6, 7, 5]. This thesis extends

the formalizations provided in this prior work and encodes all of the formalization in

the Coq proof assistant. Most significantly, this thesis provides new formalizations of

variational set properties defined in Section 2.3.1.1 and mechanized proofs of correctness

of variational set union and intersection operations, VRA type system, and the process

of handling implicitly annotated v-queries by the VDBMS.

Managing database variation in time or space has been studied extensively. Schema

evolution and data migration are two well supported temporal variations [27, 11, 4,

32, 29]. Data integration [14] is a form of variation in space. In the context of SPL,

where variation can occur in both time and space, temporal and structural variation

are addressed independently by researchers. Temporal variation in SPL is addressed

by adapting work on database evolution [18]. Work on structural variation focus on

generating specialized schema for each software variant in SPL [2, 22, 20]. Like VDBMS,

Humblet et al. [20] uses annotations that connect software features to schema elements.

Abo Zaid and De Troyer [2] also uses annotative approach, but works at a higher level

than VDBMS. However, unlike VDBMS, none of these work can be generalized to handle

arbitrary forms of variation not do they support interaction among variation and allow

writing queries that can express both temporal and structural variation in information

need.

In variational databases, variational schemas and variation tables (Sections 2.3.2 and

2.3.3) are based on existing work on variational sets [16, 36] which is a part of broader

variational data structure research that strives to support computing with variation at

runtime [28, 36]. Variational queries (Section 3.1) are supported through choice calculus.

Choice calculus is a formal language to represent and transform variation in software and

other structured documents [35].

An increasing number of formal system verification like the one presented in this

thesis has been carried out in recent years and has appeared as published case studies in

literature. Some notable work in formal verification are as follows. One of the success-
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fully commercialized verification projects is the certified C compiler, CompCert [25, 26],

for which Leory’s work [25] received the POPL test of the time award in 2016. CakeML, a

variant of standard ML language [24] also comes with formally verified compiler. Klein et

al. [23] provide correctness proofs for a seL4 Operating System Kernel. Gu et al. [17] for-

mally certified a concurrent kernel for the x86 architecture that has fine-grained locking.

Coq correctness proofs of an Raft distributed consensus protocol are presented in [31].

Blanchette et al. [9] provides formalization of conflict-driven clause learning calculus for

sat solver. Amazon web service (AWS) is increasingly investing in formal verification to

raise security level of its products [13] and has already formalized open source imple-

mentation of Transport Layer Service (TLS) Protocol that is used in numerous Amazon

services [12].
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Chapter 6: Conclusion and Future Work

Variation in data is unavoidable and can appear in many forms within different contexts.

Consequently, variation management has been extensively studied by the database com-

munity including schema evolution, data integration, database versioning. However,

while there are many efficient context specific solutions, no fundamental solution ex-

ists that can handle variation of any form, irrespective of the context. Moreover, in

practice, variation of different forms can interact in a particular context. For example,

temporal and spatial variation in database collide in the context of SPL with no good

solution to support the interaction. Variational databases treat variation orthogonal

to data and extend relational databases with explicit encoding of variation within the

database through annotation. The elementary structure in the variation database is vari-

ational set. In the effort of formalizing variational databases, this thesis first formally

encodes the variational set and its operations, formally defines and encodes variational

set properties, and provides formal proofs of correctness of variational set operations.

Correctness of the variational set operations is defined with respect to respective plain

set operations. Then, it formally encodes variational database schema and content. In

addition to incorporating variation into the database, VDBMS also provides variational

queries, that is v-queries, that can explicitly express variation in its information need

and allows writing implicitly annotated v-queries without repeating variation that are

already encoded in the VDB and in the sub-queries. The variational relational algebra

(VRA) of VDBMS for writing v-queries comes with a static type system. This thesis

provides formally verification of the VRA type system as well as formally verifies the

process of handling implicitly annotated v-query by the VDBMS.

Formal proofs of most of the theorems are included in the Appendix. Two proofs

in Appendix C.2.6 and C.2.5 as well as the two, in Appendix C.2.4 and C.2.3 can be

combined into one proof. Also, the variational condition typing rules (Figure 3.5) are

encoded as they are defined in [5] where two typing rules are not variation preserving

with respect to the standard plain condition typing rules (see the discussion in Section

3.2). Immediate follow-up of this work could be studying the consequence of making
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these typing rules variation preserving on the usability of v-query and modifying the

formalization as such.
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Appendix A: Formal Encoding of Variational Set

Variation sets are discussed in Section 2.3.1. Formal encoding VDB requires encoding of

both plain set and v-set. Following sections include encoded definitions and mechanized

proofs required for formalizing variational sets.

A.1 Plain Set and V-set Properties

A.1.1 nodupelem Equivalence Property

nodupelem converts any variational set to an equivalent variational set with No-Dup-Elem

property. Following lemma nodupelem gen equiv velems list formally proves that this

function maintains equivalency.

Lemma nodupelem_gen_equiv_velems_list: forall v, v =vlist= (nodupelem v).

Proof. intro v.

functional induction (nodupelem v) using nodupelem_ind;

unfold "=vlist="; unfold "=vlist=" in *; intro c; simpl.

+ reflexivity.

+ destruct (E[[ e]] c) eqn:He;

[apply cons_equiv_list | ]; auto.

+ destruct (E[[ e]] c) eqn:He.

(* (E[[ e]] c) = true *)

++ rewrite orb_true_l.

specialize IHv0 with c.

apply cons_equiv_list with (a:=a) in IHv0.

rewrite ← IHv0. rewrite existsbElem_InElem in e1.

unfold "=list=".

(* Goal: In a0 (a :: X[[ vs]] c) ↔ In a0 (a :: X[[ removeElem a vs]] c) *)

intro a0. split; intro.

+++ (* → *) simpl in H. destruct H. rewrite H. simpl. eauto.

destruct (string_dec a0 a) eqn:Haa0.

rewrite e0. simpl. eauto.

apply removeElem_neq_In with (vs:=vs) (c:=c) in n as HInrm.

simpl. rewrite HInrm in H. eauto.

+++ (* ← *) simpl in H. destruct H. rewrite H. simpl. eauto.

destruct (string_dec a0 a) eqn:Haa0.

rewrite e0. simpl. eauto.

apply removeElem_neq_In with (vs:=vs) (c:=c) in n as HInrm.
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simpl. rewrite ← HInrm in H. eauto.

(* (E[[ e]] c) = false *)

++ simpl. destruct (E[[ get_annot a vs]] c) eqn:Hget.

+++ (* (E[[ get_annot a vs]] c) = false *) specialize IHv0 with c.

apply cons_equiv_list with (a:=a) in IHv0.

rewrite ← IHv0. apply get_annot_true_In in Hget.

apply removeElem_In in Hget. auto.

+++ (* ((E[[ get_annot a vs]] c) = false *) rewrite ← IHv0.

apply get_annot_false_notIn in Hget.

apply removeElem_notIn in Hget. auto.

Qed.

A.1.2 Plain Set Equivalence Relation

Plain set equivalence in Defintion 2.3.11 is encoded as equiv elems in Coq (See Section

2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_elems is Reflexive *)

Remark equiv_elems_refl: Reflexive equiv_elems.

Proof.

intros A a. split; reflexivity.

Qed.

(* equiv_elems is Symmetric *)

Remark equiv_elems_sym : Symmetric equiv_elems.

Proof.

intros A A’ H a.

split; symmetry;

apply H.

Qed.

(* equiv_elems is Transitive *)

Remark equiv_elems_trans : Transitive equiv_elems.

Proof.

intros A A’’ A’ H1 H2 a.

split; try (transitivity (In a A’’));

try (transitivity (count_occ string_eq_dec A’’ a));

try (apply H1);

try (apply H2).

Qed.

(* equiv_elems is an Equivalence relation *)

Instance elems_Equivalence : Equivalence equiv_elems := {

Equivalence_Reflexive := equiv_elems_refl;

Equivalence_Symmetric := equiv_elems_sym;
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Equivalence_Transitive := equiv_elems_trans }.

A.1.3 V-set Equivalence Relation

V-set equivalence in Defintion 2.3.12 is encoded as equiv velems in Coq (See Section

2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_velems is Reflexive *)

Remark equiv_velems_refl: Reflexive equiv_velems.

Proof.

intros A a. reflexivity.

Qed.

(* equiv_velems is Symmetric *)

Remark equiv_velems_sym : Symmetric equiv_velems.

Proof.

intros A A’ H a.

symmetry.

apply H.

Qed.

(* equiv_velems is Transitive *)

Remark equiv_velems_trans : Transitive equiv_velems.

Proof.

intros A A’’ A’ H1 H2 a.

transitivity (configVElemSet A’’ a).

apply H1.

apply H2.

Qed.

(* equiv_velems is a Equivalence relation *)

Instance velems_Equivalence : Equivalence equiv_velems := {

Equivalence_Reflexive := equiv_velems_refl;

Equivalence_Symmetric := equiv_velems_sym;

Equivalence_Transitive := equiv_velems_trans }.

A.1.4 Annotated V-set Equivalence Relation

Annotated V-set equivalence in Defintion 2.3.13 is encoded as equiv avelems in Coq (See

Section 2.3.1.1). Following are the Coq proofs of its equivalence relation property.

(* equiv_avelems is Reflexive *)

Remark equiv_avelems_refl: Reflexive equiv_avelems.
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Proof.

intro X. destruct X. unfold equiv_avelems. split;

reflexivity.

Qed.

(* equiv_avelems is Symmetric *)

Remark equiv_avelems_sym : Symmetric equiv_avelems.

Proof.

intros X Y. intros H. destruct X, Y. unfold equiv_avelems.

unfold equiv_avelems in H. symmetry. apply H.

Qed.

(* equiv_avelems is Transitive *)

Remark equiv_avelems_trans : Transitive equiv_avelems.

Proof.

intros X Y Z. intros H1 H2.

destruct X as (vx, fx), Y as (vy, fy), Z as (vz, fz).

unfold equiv_vqtype in H1.

unfold equiv_vqtype in H2.

unfold equiv_vqtype.

intro c. transitivity (QT[[ (vy, fy)]] c); auto.

Qed.

(* equiv_avelems is a Equivalence relation *)

Instance avelems_Equivalence : Equivalence equiv_avelems := {

Equivalence_Reflexive := equiv_avelems_refl;

Equivalence_Symmetric := equiv_avelems_sym;

Equivalence_Transitive := equiv_avelems_trans }.

A.1.5 V-Set Subset Correctness

Theorem subset_velems_correctness A A’ (HndpA: NoDupElem A) (HndpA’: NoDupElem

A’):

subset_velems_exp A A’ ↔ (forall c, subset (X[[ A]]c) (X[[ A’]]c)).

Proof. split;

generalize dependent A’; generalize dependent A;

induction A’ as [|(a’, ea’) A’ IHA’];

intros HndpA’ H.

(*Goals → : 1: A’ := [] , 2: A’ := [ae a ’ ea’:A’]*)

1, 2: unfold subset_velems_exp in H; unfold subset; intros c x;

try (split; (* 1: subset A [] to 1-1: In A [] 1-2: count A [] *)

(* 2: subset A [_:A’] to 2-1: In A [_:A’][] 2-2: count A [_:A’][] *)
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[ (* 1-1 2-1 In: intro In x X[[A]]c *)

intro HInxA |

(* 1-2 2-2 count: destruct (count_occ A x) *)

destruct (count_occ string_eq_dec (X[[ A]] c) x) eqn:Hcount;

[(* Case 0: count_occ string_eq_dec (X[[ A]] c) x = 0 *)

(* trivial 0 <= any *) simpl; auto; apply (count_occ_ge_0) |

(* Case Sn: count_occ l x = S n → HInxA: In x X[[A]]c *)

pose (gt_Sn_O n) as HInxA; rewrite ← Hcount in HInxA;

rewrite ← count_occ_In in HInxA ]

]); (* 1-1 → 1 , 2-1 → 2, 2-1 → 3, 2-2 → 4*)

(* In x X[[A]]c → exists e, In (x, e) A ∧ E[[e]]c = true *)

rewrite ← In_config_exists_true in HInxA;

destruct HInxA as [e HInxeA];

specialize H with x e c;

(* cereate subset premise H’: In (x,e) A ∧ sat e*)

assert (H’: In (ae x e) A ∧ (E[[ e]] c) = true);

try(auto);

(* get subset conclusion with H’ → HIne’: In (x, e’) A’ ∧ Hsat: e → e’ *)

apply H in H’; destruct H’ as [e’ He’];

destruct He’ as [HIne’ Hsat]; simpl in HIne’.

(* 1, 2: In x [] , count x []

destruct (In (x, e’) []) *)

1, 2: try (destruct HIne’). (* proving 1,2 changes goals? 3→ 1, 4→ 2 *)

(* 1, 2: In x [_:A’] , count [_:A’] x *)

1, 2: destruct HInxeA as [HInxeA Hetrue];

(* (E[[ e]] c) = true → (E[[ e’]] c) = true*)

(*rewrite not_sat_not_prop in Hsat;

rewrite ← sat_taut_comp in Hsat;

specialize Hsat with c; apply Hsat in Hetrue;*)

(* 1: In x (X[[ ae a’ ea’ :: A’]] c) → (x = a’ ∧ ea’ = true) ∨ In x X[[A’]]c *)

(* 2: count_occ (X[[ ae a’ ea’ :: A’]] c) x →
[case (x = a’ ∧ ea’ = true): S (count_occ X[[A’]]c x)

case _ : count_occ X[[A’]]c x *)

(* destruct HIne’: (ae a’ ea’ = ae x e’ ∨ In (ae x e’) A’) *)

try (destruct HIne’ as [Heq | Hin];

[(* Case Heq: ae a’ ea’ = ae x e’ *)

inversion Heq; subst;

simpl; rewrite Hsat; simpl

|
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(* Case HIn: In (ae x e’) A’*) (* proves Goal 1 right *)

]). (** 1→ 1(Heq), 2(HIn) 2→ 3(Heq), 4(HIn)*)

3, 4: apply NoDupElem_NoDup_config with (c:=c) in HndpA as Hcount’;

rewrite (NoDup_count_occ string_eq_dec) in Hcount’; specialize Hcount’ with x;

assert (Hn: n = 0); try (Lia.lia); rewrite Hn;

inversion HndpA’; subst; apply notInElem_notIn_config with (c:=c) in H2;

rewrite (count_occ_not_In string_eq_dec) in H2.

{ (* 1: 1- Case Heq *)left. reflexivity. }

{ (* 2: 1- Case HIn *)simpl. destruct (E[[ ea’]] c); try simpl;

try right; rewrite ← In_config_exists_true; exists e’;

eauto. }

{ (* 3: 2- Case Heq *)case (string_eq_dec x x); intro Hx; [|contradiction].

Lia.lia. }

{ (* 4: 2- Case HIn *)simpl. destruct (E[[ ea’]] c); try simpl;

[ case (string_eq_dec a’ x); intro; [ Lia.lia | ] |];

assert (HInxA’: In x (X[[ A’]]c));

try(rewrite ← In_config_exists_true; exists e’; eauto);

rewrite (count_occ_In string_eq_dec) in HInxA’;

apply NoDupElem_NoDup_config with (c:=c) in H4 as HcountA’;

rewrite (NoDup_count_occ string_eq_dec) in HcountA’;

specialize HcountA’ with x; Lia.lia. }

(* ← *)

(* case []: *)

(** Prove with two facts: subset (X[[A]]c) [] → subset_velems_exp A []

1. forall c, (X[[A]]c) = [] → subset_velems_exp A []

2. exists c, (X[[A]]c) <> [] → subset (X[[A]]c) [] *)

(* introduce (forall c, (X[[A]]c) = []) ∨ (exists c, (X[[A]]c) <> []) *)

pose Classical_Prop.classic as Hclassic.

specialize Hclassic with (forall c, (X[[ A]] c) = []).

destruct Hclassic as [Hall | Hexists].

{ (* case 1: forall c, (X[[A]]c) = [] *)

apply nilconfig_subset_nil. assumption. }

{ (* case 2: exists c, (X[[A]]c) <> [] *)

apply not_all_ex_not in Hexists. destruct Hexists as [c Hexists].
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specialize H with c.

destruct ((X[[ A]] c)) eqn: HAc. contradiction. simpl in H.

apply not_subset_cons_nil in H. destruct H. }

(* case (ae a’ ea’: A’): *)

unfold subset_velems_exp. intros x e c HInxeA.

destruct HInxeA as[ HInxeA Hsat].

unfold subset in H.

specialize H with c x.

destruct H as [HInxAA’ Hcount].

assert (HInxA: In x (X[[A]]c)).

rewrite ← In_config_exists_true. exists e. eauto.

apply HInxAA’ in HInxA as HInxA’. simpl in HInxA’.

destruct (E[[ ea’]] c) eqn: Hea;

[ simpl in HInxA’;

destruct HInxA’ as [Heq | HInxA’];

[ exists ea’; inversion Heq; subst; split;

[simpl; left; reflexivity | auto] | ] | ].

1, 2: rewrite ← In_config_exists_true in HInxA’;

destruct HInxA’ as [e’ HInxA’];

destruct HInxA’ as [HInxe’A’ He’];

exists e’; split;

[simpl; right; auto | auto].

Qed.

A.2 Plain Set and V-set Operations

V-set operations are defined to extend plain set operations for variational sets. Following

sections provide formal proofs of expected properties of these operation.

A.2.1 Plain Set Union Identity

(* Plain set union nil-r *)

Lemma elems_union_nil_r: forall A, elems_union A [] =set= A.

Proof. intros. simpl. reflexivity. Qed.

(* Plain set union nil-l *)

Lemma elems_union_nil_l: forall A (H: NoDup A), elems_union [] A =set= A.

Proof. intros. unfold elems_union. unfold equiv_elems.
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intro a. split. split.

- rewrite set_union_iff. simpl. intro.

destruct H0. destruct H0. auto.

- intro H0. rewrite set_union_iff. eauto.

- pose (NoDup_nil elem) as Hnil.

pose (set_union_nodup string_eq_dec Hnil H) as Hndp.

destruct (in_dec string_eq_dec a A).

+ apply (set_union_intro2 string_eq_dec) with (x:=[]) in i as HsetU.

rewrite NoDup_count_occ’ in Hndp, H.

rewrite Hndp, H.

reflexivity. exact i. exact HsetU.

+ assert (n’: In a []). simpl. unfold not. eauto.

pose (conj n’ n) as Hnn’.

rewrite notIn_set_union in Hnn’.

rewrite count_occ_not_In in n, Hnn’.

rewrite n, Hnn’. reflexivity.

Qed.

A.2.2 V-Set Union Identity

(* V-set union nil-r *)

Lemma velems_union_nil_r : forall A (H: NoDupElem A), velems_union A [] = A.

Proof. intro A.

intro H. unfold velems_union. simpl.

apply nodupelem_fixed_point. auto.

Qed.

(* V-set union nil-l *)

Lemma velems_union_nil_l : forall A (H: NoDupElem A), velems_union [] A =vset= A.

Proof.

induction A. simpl.

reflexivity. simpl.

intro H.

unfold velems_union.

simpl. destruct a as (a, e).

(* get In a set_union from context and rewrite set_add *)

pose (NoDupElem_NoDup H) as Hnodup.

inversion Hnodup; subst.

apply (contrapositive _ _ (set_union_emptyL velem_eq_dec (ae a e) A)) in H2.

unfold set_In in H2.

pose (notIn_set_add_equiv_velems (ae a e) (set_union velem_eq_dec [] A)) as

Hset_add.

rewrite (nodupelem_equiv (Hset_add (H2))).

clear Hnodup.

(* get InElem a set_union from context and rewrite nodupelem *)
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inversion H; subst.

assert(HInnil: InElem a []). simpl. eauto.

pose (conj HInnil H4) as H4’.

apply (notInElem_set_union a [] A) in H4’.

pose nodupelem_not_in_cons as Hcons.

apply (Hcons a e ((set_union velem_eq_dec [] A))) in H4’.

rewrite H4’.

apply IHA in H6.

unfold velems_union in H6.

apply cons_equiv_velems. assumption.

Qed.

A.2.3 V-set Union Variation Preservation

V-set union variation preservation theorem is given below. A mathematical proof is

included for this theorem as its formal proof is a bit complicated than others and also to

demonstrate the correspondence between mathematical and formal proofs at least once

in the thesis. The mathematical proof is followed by the respective formal proof.

Theorem A.2.1. For any two v-sets, Xv and Xv
′, XJXv∪Xv

′Kc ≡set XJXvKc∪XJXv
′Kc.

Proof. Proof by induction on Xv
′.

� Base case Xv
′ = {}: Proof by cases of Xv .

– case Xv = {}: XJ{} ∪ {}Kc ≡set XJ{}Kc ∪ XJ{}Kc => {} ≡set {} => True (reflexivity)

– case Xv = (ae :: Xv):

XJ(ae :: Xv) ∪ {}Kc ≡set XJ(ae :: Xv)Kc ∪ XJ{}Kc
=> XJ{}Kc ≡set XJ{}Kc (From lemma 2.3.21 and 2.3.23)

=> True (reflexivity)

� Inductive case Xv
′ = (a′e

′
:: Xv

′):

From inductive hypothesis,

∀Xv , XJXv ∪Xv
′Kc ≡set XJXvKc ∪ XJXv

′Kc (2.1)

we need to prove t,hat i.e. our goal is,

XJXv ∪ (a′e
′

:: Xv
′)Kc ≡set XJXvKc ∪ XJ(a′e

′
:: Xv

′)Kc (2.2)

From No-Dup-Elem property (Definition 2.3.1) of v-set (a′e
′

:: Xv
′), we get,

∼ In-Elem a′ Xv
′ (2.3)

∼ In a′e
′
Xv
′ (2.4)

Proof by cases ( In a′e
′
Xv ).
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– caseIn a′e
′
Xv :

In a′e
′
Xv (2.5)

From eq. 2.5 we get,

XJXv ∪ (a′e
′

:: Xv
′)Kc ≡set XJXv ∪Xv

′Kc (2.6)

From eq. 2.6, our goal in eq. 2.2 becomes,

XJXv ∪Xv
′Kc ≡set XJXvKc ∪ XJ(a′e

′
:: Xv

′)Kc

=> XJXv ∪Xv
′Kc ≡set XJXvKc ∪ (if EJe′Kc then (a :: XJXv

′Kc) else XJXv
′Kc) (From Defintion (Fig. 2.4))

(2.7)

Proof by cases of EJe′Kc = True.

* case EJe′Kc = True :

Eq. 2.7 becomes,

XJXv ∪Xv
′Kc ≡set XJXvKc ∪ (a′ :: XJXv

′Kc) (2.8)

Simplifying plain set union on the R.S. gives,

XJXv ∪Xv
′Kc ≡set Set-add a′ (XJXvKc ∪ XJXv

′Kc) (2.9)

From Eq. 2.5, we get,

In a′e
′
Xv

=> In a′ XJXvKc

=> In a′ (XJXvKc ∪ XJXv
′Kc)

=> Set add a′ (XJXvKc ∪ XJXv
′Kc) = XJXvKc ∪ XJXv

′Kc (2.10)

Rewriting equation 2.10 in eq. 2.9,

XJXv ∪Xv
′Kc ≡set XJXvKc ∪ XJXv

′Kc (2.11)

which is True by induction hypothesis (Eq. 2.1).

* case EJe′Kc = False :

Eq. 2.7 becomes,

XJXv ∪Xv
′Kc ≡set XJXvKc ∪ (a′ :: XJXv

′Kc) (2.12)

which is True by induction hypothesis (Eq. 2.1).

– case ∼ In a′e
′
Xv :

∼ In a′e
′
Xv (2.13)

Even if variational element a′e
′

not in Xv , plain element a′ can still be in Xv with some other

annotation or can be absent.

Proof by cases of ( In-Elem a′ Xv ).

* case In-Elem a′ Xv :

In-Elem a′ Xv (2.14)

From eq. 2.13 and 2.14,

Xv ∪ (a′e
′

:: Xv
′) ≡vset a

′ e′ ∨ get-annot a′ (Xv∪Xv
′) :: ((remove-elem a′ Xv) ∪Xv

′) (2.15)
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L.S. of our goal (Eq. 2.2),

L.S. ≡set XJXv ∪ (a′e
′

:: Xv
′)Kc

≡set XJa′ e
′ ∨ get-annot a′ (Xv∪Xv

′) :: ((remove-elem a′ Xv) ∪Xv
′)Kc (Rewriting eq.2.15)

≡set if (EJ e′ ∨ get-annot a′ (Xv ∪Xv
′)Kc)

then a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc

else XJ((remove-elem a′ Xv) ∪Xv
′)Kc (From Defintion (Fig. 2.4))

(2.16)

R.S. of our goal (Eq. 2.2),

R.S. ≡set XJXvKc ∪ XJ(a′e
′

:: Xv
′)Kc

≡set XJXvKc ∪ (if EJe′Kc then (a′ :: XJXv
′Kc) else XJXv

′Kc) (From Definition (Fig. 2.4))

(2.17)

Proof by cases of ( EJe′Kc).

· case EJe′Kc = True :

From eq. 2.16 and 2.17 we get,

L.S. ≡set if (EJTrue ∨ get-annot a′ (Xv ∪Xv
′)Kc)

then a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc

else XJ((remove-elem a′ Xv) ∪Xv
′)Kc

≡seta
′ :: XJ((remove-elem a′ Xv) ∪Xv

′)Kc (2.18)

R.S. ≡set XJXvKc ∪ (a′ :: XJXv
′Kc) (2.19)

Hence, our current goal is,

a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set XJXvKc ∪ (a′ :: XJXv

′Kc) (2.20)

From Eq. 2.3 we get,

XJXvKc ∪ (a′ :: XJXv
′Kc) ≡set a

′ :: (XJremove-elem a′ XvKc ∪ XJXv
′Kc) (2.21)

Applying transitivity on eq. 2.20 and 2.21, we get,

a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set a

′ :: (XJremove-elem a′ XvKc ∪ XJXv
′Kc)

(2.22)

which is True by induction hypothesis (Eq. 2.1).

· case EJe′Kc = False :

From eq. 2.16 and 2.17 we get,

L.S. ≡set if (EJ get-annot a′ (Xv ∪Xv
′)Kc)

then a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc

else XJ((remove-elem a′ Xv) ∪Xv
′)Kc (2.23)

R.S. ≡set XJXvKc ∪ XJXv
′Kc (2.24)

If,

EJ get-annot a′ (Xv ∪Xv
′)Kc = True (2.25)

from eq. 2.23 and 2.24 we get,

a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set XJXvKc ∪ XJXv

′Kc (2.26)
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From definition of get-annot (Def. 2.3.4),

EJ get-annot a′ (Xv ∪Xv
′)Kc = True => In-Elem a′ (Xv ∪Xv

′)

=> In-Elem a′ Xv (From eq.2.3)

=> In a′(get-annot a′ (Xv∪Xv
′)) Xv

=> In a′ XJXvKc (From eq.2.25)

(2.27)

From Eq. 2.27 we get,

XJXvKc ∪ XJXv
′Kc ≡set a

′ :: (XJremove-elem a′ XvKc ∪ XJXv
′Kc) (2.28)

Rewriting eq. 2.28 on the R.S. of eq. 2.26

a′ :: XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set a

′ :: (XJremove-elem a′ XvKc ∪ XJXv
′Kc)

(2.29)

which is True by induction hypothesis (Eq. 2.1).

Else if,

EJ get-annot a′ (Xv ∪Xv
′)Kc = False (2.30)

from eq. 2.23 and 2.24 we get,

XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set XJXvKc ∪ XJXv

′Kc (2.31)

From definition ofget-annot (Def. 2.3.4),

EJ get-annot a′ (Xv ∪Xv
′)Kc = False =>∼ In-Elem a′ (Xv ∪Xv

′)

=>∼ In-Elem a′ Xv (From eq.2.3)

=>∼ In a′ XJXvKc (2.32)

From Eq. 2.32 we get,

XJXvKc ∪ XJXv
′Kc ≡set XJremove-elem a′ XvKc ∪ XJXv

′Kc (2.33)

Rewriting eq. 2.33 on the R.S. of eq. 2.31,

XJ((remove-elem a′ Xv) ∪Xv
′)Kc ≡set XJremove-elem a′ XvKc ∪ XJXv

′Kc (2.34)

which is True by induction hypothesis (Eq. 2.1).

* case ∼ In-Elem a′ Xv :

∼ In-Elem a′ Xv (2.35)

From eq. 2.13 and 2.35, we get,

Xv ∪ (a′e
′

:: Xv
′) ≡vset a

′e′ :: (Xv ∪Xv
′) (2.36)

Rewriting above eq. 2.36 on the R.S. of our goal in eq. 2.2,

XJa′e
′

:: (Xv∪ : Xv
′)Kc ≡set XJXvKc ∪ XJ(a′e

′
:: Xv

′)Kc (2.37)

From eq. 2.35 and 2.3, we can re-write eq.2.37 as,

XJXv∪ : Xv
′Kc ≡set XJXvKc ∪ XJXv

′Kc (2.38)

which is True by induction hypothesis (Eq. 2.1).

Therefore, goal (Eq. 2.1) for inductive case is True for all cases. �

Formal proof of the above theorem is given below.
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Theorem velems_union_is_variation_preserving : forall A A’ c (HA: NoDupElem A)

(HA’: NoDupElem A’),

X[[ velems_union A A’]]c =set= elems_union (X[[ A]] c) (X[[ A’]] c).

Proof. intros A A’. generalize dependent A. induction A’ as [|a’ A’ IHA’].

- (* case A’ = [] *)

(*

-----------------------------------------------

X[[ velems_union A []]] c =set= elems_union (X[[ A]] c) []

*)

destruct A as [| a A]; intros.

+ (* case A = [] *) simpl. reflexivity.

+ (* case A = (a :: A) *) simpl (X[[ _]] _) at 3.

(* forall X, velems_union X [] =vset= [] ∧ forall x, elems_union x [] =set=

[] *)

rewrite velems_union_nil_r, elems_union_nil_r.

reflexivity. assumption.

- (* case A’ = (a :: A’) *)

intros A c Ha Ha’. destruct a’ as (a’, e’).

(* IHA’ : X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ A’]] c)

Ha’ : NoDupElem (ae a’ e’ :: A’)

.........

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c) (X[[

ae a’ e’ :: A’]] c)

*)

(* inversion NoDupElem (ae a’ e’ :: A’) → InElem a’ A’ *)

inversion Ha’ as [| a’’ e’’ A’’ HnInElemA’ HNdpElemA’]; subst.

simpl set_union.

(* InElem a’ A’ → In (ae a’ e’) A’ *)

pose (NoDupElem_NoDup Ha’) as Hndp.

inversion Hndp as [|a’’ e’’ HnInA’ HNDpA’]; subst. clear Hndp.

(* IHA’ : X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ A’]] c)

HnInA’ : In (ae a’ e’) A’

HnInElemA’ : InElem a’ A’

.......

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c) (X[[

ae a’ e’ :: A’]] c)

*)

(** Prove by cases of In (ae a’ e’) A *)

destruct (in_dec velem_eq_dec (ae a’ e’) A) as [HInA | HnInA].

+ (* case In (ae a’ e’) A *)



76

(* IHA’ : X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ A’]]

c)

HnInA’ : In (ae a’ e’) A’

HnInElemA’ : InElem a’ A’

HInA : In (ae a’ e’) A

........

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c)

(X[[

ae a’ e’ :: A’]] c)

*)

(* HInA : In (ae a’ e’) A → velems_union A (ae a’ e’ :: A’) =vset=

velems_union A A’ *)

apply velems_union_InA with (B:=A’) in HInA as Hequiv.

unfold "=vset=" in Hequiv. rewrite Hequiv.

(* .......

-----------------------------------------------

X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ ae a’ e’ ::

A’]] c)

*)

simpl.

(* .......

-----------------------------------------------

X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c)

(if E[[ e’]] c then a’ :: X[[ A’]] c else X[[ A’]] c)

*)

destruct (E[[ e’]] c) eqn:He’.

++ (* case (E[[ e’]] c) = true *)

(* HInA : In (ae a’ e’) A

.......

-----------------------------------------------

X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (a’ :: X[[ A’]] c)

*)

simpl elems_union. unfold elems_union.

unfold elems_union in IHA’.

(* HInA : In (ae a’ e’) A

.......

-----------------------------------------------

X[[ velems_union A A’]] c =set= set_add string_eq_dec a’ (elems_union

(X[[ A]] c) (X[[ A’]] c))

*)

(* HInA : In (ae a’ e’) A → HInA_c: In a’ (X[[A]]c) *)

pose (In_config_true a’ e’ A c HInA He’) as HInA_c.

(* HInA_c: In a’ (X[[A]]c) → In a’ (elems_union (X[[ A]] c) (X[[ A’]]

c) *)
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apply (set_union_intro1 string_eq_dec) with (y:= (X[[ A’]]c)) in

HInA_c.

(* HInA_c → set_add string_eq_dec a’ (elems_union (X[[ A]] c) (X[[

A’]] c)) = elems_union (X[[ A]] c) (X[[ A’]] c) *)

apply (In_set_add string_eq_dec) in HInA_c. rewrite HInA_c. clear

HInA_c.

(* IHA’ : X[[ velems_union A A’]] c =set= elems_union (X[[ A]]c) (X[[

A’]]c)

.......

-----------------------------------------------

X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ A’]] c)

*)

apply IHA’; eauto.

++ (* case (E[[ e’]] c) = false *)

apply IHA’; eauto.

+ (* case In (ae a’ e’) A *)

(* IHA’ : X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[ A’]]

c)

HnInA’ : In (ae a’ e’) A’

HnInElemA’ : InElem a’ A’

.......

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c)

(X[[ ae a’ e’ :: A’]] c)

*)

(** Proof by cases of existsbElem a’ A *)

destruct (existsbElem a’ A) eqn:HexstElemA.

++ (* case existsbElem a’ A = true → InElem a’ A *)

existsbElem_InElem in HexstElemA. rename HexstElemA into HInElemA.

(* HnInA : In (ae a’ e’) A

HInElemA : InElem a’ A

........

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c)

(X[[ ae a’ e’ :: A’]] c)

*)

(* From velems_union Defn, HnInA ∧ HInElemA →
velems_union A (ae a’ e’ :: A’) =vset= ae a’ (e’ ∨ (F) extract_e a’

(velems_union A A’)):: velems_union (removeElem a’ A) A’]] c *)

apply (velems_union_nInA_InElemA) with (A:=A) in Ha’ as Hequiv;

try( split; assumption); try assumption.

unfold "=vset=" in Hequiv. rewrite Hequiv.
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(* ........

-----------------------------------------------

X[[ ae a’ (e’ ∨ (F) extract_e a’ (set_union velem_eq_dec A A’))

:: velems_union (removeElem a’ A) A’]] c

=set= elems_union (X[[ A]] c) (X[[ ae a’ e’ :: A’]] c)

*)

simpl.

(* ........

-----------------------------------------------

(if (E[[ e’]] c) || (E[[ extract_e a’ (set_union velem_eq_dec A A’)]]c)

then a’ :: X[[ velems_union (removeElem a’ A) A’]] c

else X[[ velems_union (removeElem a’ A) A’]] c) =set= elems_union

(X[[ A]] c) (if E[[ e’]] c then a’ :: X[[ A’]] c else X[[ A’]] c)

*)

(** Prove by cases (E[[ e’]] c) *)

destruct (E[[ e’]] c) eqn:He’.

+++ (* (E[[ e’]] c) = true *)

rewrite orb_true_l.

(* HnInElemA’ : InElem a’ A’

.........

-----------------------------------------------

a’ :: X[[ velems_union (removeElem a’ A) A’]] c

=set= elems_union (X[[ A]] c) (a’ :: X[[ A’]] c)

*)

(* HnInElemA’ : InElem a’ A’ → elems_union (X[[ A]] c) (a’ :: X[[

A’]] c)

=set= a’ :: elems_union (X[[ removeElem a’ A]] c) (X[[ A’]] c) *)

rewrite (notInElemA’_set_union_cons_removeElem _ c Ha HNdpElemA’

HnInElemA’).

apply cons_equiv_elems.

(* IHA’: X[[ velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[

A’]] c)

..........

-----------------------------------------------

a’ :: X[[ velems_union (removeElem a’ A) A’]] c

=set= a’ :: elems_union (X[[ removeElem a’ A]] c) (X[[ A’]] c)

*)

apply IHA’; eauto.

+++ (* (E[[ e’]] c) = false *)

rewrite orb_false_l.

(* HnInElemA’ : InElem a’ A’

.........

-----------------------------------------------
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(if E[[ extract_e a’ (set_union velem_eq_dec A A’)]] c

then a’ :: X[[ velems_union (removeElem a’ A) A’]] c

else X[[ velems_union (removeElem a’ A) A’]] c) =set= elems_union

(X[[ A]] c) (X[[ A’]] c)

*)

(* InElem a’ A’→ E[[ extract_e a’ (set_union velem_eq_dec A

A’)]]c = E[[ extract_e a’ A]]c *)

rewrite notInElemA’_extract_set_union; try assumption.

apply InElem_extract in HInElemA as HInAexe; try assumption.

destruct HInAexe as [e [HInA Hexeqe] ].

(* .........

-----------------------------------------------

(if E[[ extract_e a’ A]] c

then a’ :: X[[ velems_union (removeElem a’ A) A’]] c

else X[[ velems_union (removeElem a’ A) A’]] c) =set= elems_union

(X[[ A]] c)

(X[[ A’]] c)

*)

(** Prove by cases (E[[ e’]] c) *)

destruct (E[[ extract_e a’ A]] c) eqn: Hexta’.

++++ (* E[[ extract_e a’ A]]c = true *)

(* E[[ extract_e a’ A]]c = true → E[[e]]c = true *)

rewrite Hexeqe in Hexta’. simpl in Hexta’.

rewrite orb_false_r in Hexta’.

(* E[[e]]c = true ∧ In (ae a e) A → In a X[[A]]c *)

apply In_config_true with (c:=c) in HInA; try assumption.

(* In a X[[A]]c → elems_union (X[[ A]] c) (X[[ A’]] c) =set=

(a’ :: elems_union (X[[ removeElem a’ A]] c) (X[[ A’]] c)) *)

rewrite (In_set_union_removeElem _ c Ha HNdpElemA’ HInA

HnInElemA’).

apply cons_equiv_elems.

apply IHA’; eauto.

++++ (* E[[ extract_e a’ A]]c = false *)

(* E[[ extract_e a’ A]]c = false → E[[e]]c = false *)

rewrite Hexeqe in Hexta’. simpl in Hexta’.

rewrite orb_false_r in Hexta’.
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(* E[[e]]c = false ∧ In (ae a e) A → In a X[[[A]]c *)

apply In_config_false with (c:=c) in HInA; try assumption.

(* In a X[[A]]c → elems_union (X[[ A]] c) (X[[ A’]] c) =set=

elems_union (X[[ removeElem a’ A]] c) (X[[ A’]] c) *)

rewrite (notInElem_set_union_removeElem _ c Ha HNdpElemA’ HInA

HnInElemA’).

apply IHA’; eauto.

++ (* case existsbElem a’ A = false → InElem a’ A *)

not_existsbElem_InElem in HexstElemA.

rename HexstElemA into HnInElemA.

(* HnInA : In (ae a’ e’) A

HnInElemA : InElem a’ A

........

-----------------------------------------------

X[[ velems_union A (ae a’ e’ :: A’)]] c =set= elems_union (X[[ A]] c) (X[[

ae a’

e’ :: A’]] c)

*)

(* HnInA ∧ HnInElemA →
velems_union A (ae a’ e’ :: A’) =vset= ae a’ e’ :: velems_union A A’ *)

apply (velems_union_nInA_nInElemA) with (A:=A) in Ha’ as Hequiv;

try(split; assumption).

unfold "=vset=" in Hequiv. rewrite Hequiv.

(* HnInElemA’ : InElem a’ A’

HnInElemA : InElem a’ A

..............

-----------------------------------------------

X[[ ae a’ e’ :: velems_union A A’]] c =set= elems_union (X[[ A]] c) (X[[

ae a’ e’ :: A’]] c)

*)

(* Goal → HnInElemA’ ∧ HnInElemA ∧ IHA’ *)

apply velems_union_nInElemA_nInElemB; eauto.

Qed.

A.2.4 Plain Set Intersection of Empty Set

(* Plain set intersection nil-r *)

Lemma elems_inter_nil_r: forall A, elems_inter A [] = [].

Proof. intro A. induction A; eauto. Qed.
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(* Plain set intersection nil-l *)

Lemma elems_inter_nil_l: forall A, elems_inter [] A = [].

Proof. eauto. Qed.

A.2.5 V-Set Intersection of Empty Set

(* V-set intersection nil-r *)

Lemma velems_inter_nil_r : forall A, velems_inter A [] = [].

Proof. intro A. induction A as [|(a, e)]. reflexivity.

rewrite velems_inter_equation. simpl.

assumption. Qed.

(* V-set intersection nil-l *)

Lemma velems_inter_nil_l : forall A, velems_inter [] A = [].

Proof. intros. rewrite velems_inter_equation. simpl. reflexivity. Qed.

A.2.6 V-Set Intersection Variation Preservation

Theorem velems_intersection_is_variation_preserving : forall A A’ c (HA: NoDupElem

A) (HA’: NoDupElem A’),

X[[ velems_inter A A’]] c = elems_inter (X[[ A]] c) (X[[ A’]] c).

Proof. intros. induction A as [|a A IHA].

- (* case A = [] *) simpl. reflexivity.

- (* case A = (a::A) *)

simpl. destruct a as (a, e).

(* get ( InElemA a A) from NoDupElem (ae a e :: A) *)

inversion HA as [| a’’ e’’ A’’ HnInElemA HNdpElemA]; subst.

(* rewrite velems_inter equation*)

rewrite velems_inter_equation.

(** Proof by cases of (E[[ e]]c) *)

destruct (E[[ e]]c) eqn:He.

{ (* case He: (E[[e]]c) = true *)

simpl elems_inter.

(** Proof by cases of (set_mem _ a (X[[ A’]] c)) *)

destruct (set_mem string_eq_dec a (X[[ A’]] c)) eqn: Hset_memaA’.

+ (* case (set_mem _ a (X[[ A’]] c) = true *)

(* set_mem _ a (X[[ A’]] c) = true → In a (X[[ A’]] c) *)

apply (set_mem_correct1 string_eq_dec) in Hset_memaA’.

(* In a (X[[ A’]] c) → Hget_annot: E[[ get_annot a A’]] c = true *)

apply get_annot_true_In in Hset_memaA’ as Hget_annot.

(* In a (X[[ A’]] c) → HInelemaA’: InElem a A’ *)

apply In_InElem_config in Hset_memaA’ as HInelemaA’.

(* InElem a A’ → existsbElem a A’ = true *)
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rewrite ← existsbElem_InElem in HInelemaA’. rewrite HInelemaA’.

(* simpl X[[_]]c. rewrite He Hget_annot IHA *)

simpl configVElemSet. rewrite He, Hget_annot, IHA. simpl.

reflexivity. assumption.

+ (* case (set_mem _ a (X[[ A’]] c) <> true *)

(* set_mem _ a (X[[ A’]] c) <> true → In a (X[[ A’]] c) *)

apply (set_mem_complete1 string_eq_dec) in Hset_memaA’.

(* In a (X[[ A’]] c) → Hget_annot: E[[ get_annot a A’]] c = false *)

rewrite ← get_annot_true_In in Hset_memaA’.

(* rewrite <> true ↔ = false in Hset_memaA’ *)

rewrite not_true_iff_false in Hset_memaA’.

(** Proof by cases of existsbElem a A’ *)

destruct (existsbElem a A’).

++ (* existsbElem a A’ = true *)

(* simpl X[[_]]c. rewrite IHA Hset_memaA’ *)

simpl configVElemSet. rewrite IHA, Hset_memaA’.

rewrite andb_false_r. reflexivity. assumption.

++ (* existsbElem a A’ = false *) apply(IHA HNdpElemA).

}

{ (* case He: (E[[e]]c) = true *)

(** Proof by cases of existsbElem a A’ *)

destruct (existsbElem a A’).

+ (* existsbElem a A’ = true *)

(* simpl X[[_]]c. rewrite He IHA *)

simpl configVElemSet. rewrite He, IHA.

rewrite andb_false_l. reflexivity. assumption.

+ (* existsbElem a A’ = false *) apply(IHA HNdpElemA).

}

Qed.

A.2.7 Annotated V-Set Union Variation Preservation

Theorem avelems_union_vq_is_variation_preserving : forall Q Q’ c (HA: NoDupElem

(fst Q))(HA’: NoDupElem (fst Q’)),

AX[[(vqtype_union_vq Q Q’)]]c =set= elems_union (AX[[ Q]]c) (AX[[ Q’]]c).

Proof.

intros Q Q’ c HQ HQ’.

destruct Q as (A, e). destruct Q’ as (A’, e’).

unfold vqtype_union_vq, configaVelems.

simpl fst. simpl snd. simpl.

destruct (E[[ e]] c) eqn: He; simpl;

[ | destruct (E[[ e’]] c) eqn: He’; simpl;

[ | (* [] =set= [] *)simpl; reflexivity] ];

rewrite configVElemSet_dist_velems_union;

try (apply NoDupElem_push_annot; auto); simpl;
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repeat(rewrite configVElemSet_push_annot); simpl;

rewrite He; [|rewrite He’]; reflexivity.

Qed.

A.2.8 Annotated V-Set Intersection Variation Preservation

Theorem avelems_intersection_vq_is_variation_preserving : forall Q Q’ c (HQ:

NoDupElem (fst Q)) (HQ’: NoDupElem (fst Q’)),

AX[[ avelems_inter_vq Q Q’]] c = elems_inter (AX[[ Q]] c) (AX[[ Q’]] c).

Proof.

intros Q Q’ c HQ HQ’.

destruct Q as (A, e). destruct Q’ as (A’, e’).

unfold avelems_inter_vq. simpl. simpl in *.

destruct (E[[ e]] c) eqn: He;

destruct (E[[ e’]] c) eqn: He’; simpl; try reflexivity.

+ apply velems_intersection_is_variation_preserving; auto.

+ rewrite elems_inter_nil_r. auto.

Qed.
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Appendix B: Formal Encoding of Variational Query

B.1 RA Type System

Plain Query Type:

. || = . :Q→ S→ QT

S || = r(A) =

A, if r ∈ S

{}, otherwise

S || = πAq =

A, if A ⊆ (S || = q)

{}, otherwise

S || = σθq =

S || = q, if (S || = q) || = θ

{}, otherwise

S || = q1 × q2=

(S || = q1) ∪ (S || = q2), if (S || = q1) ∩ (S || = q2) = {}

{}, otherwise

S || = q1 ◦ q2 =

(S || = q1), if (S || = q1) ≡set (S || = q2)

{}, otherwise

S || = ε ={}

Plain query type function is encoded as type in Coq.

(* ------------------------------------------------------------

| Type of plain query

------------------------------------------------------------ *)

Fixpoint type_ (q:query) (s:schema) : qtype :=

match q with

| (rel (rn, A)) ⇒ if (existsb (relS_beq (rn, A)) s) then A else []

| (proj A q) ⇒ let A’ := type_ q s in

if subset_qtype_bool A A’ then A else []

| (sel c q) ⇒ let A := type_ q s in

if (condtype c A) then A else []
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| (setU op q1 q2) ⇒ if equiv_qtype_bool (type_ q1 s) (type_ q2 s) then type_ q1

else []

| (prod q1 q2) ⇒ if (is_disjoint_bool (type_ q1 s) (type_ q2 s)) then

elems_union (type_ q1 s) (type_ q2 s) else []

| (empty) ⇒ []

end.

Notation "s ||= q " := (type_ q s) (at level 49).

Plain Condition Type Check:

. || = . :Θ→ A→ B

A || = b =true

A || = a • k =true

A || = a1 • a2 =true

A || = ¬θ =¬(A || = θ)

A || = θ1 ∨ θ2 =(A || = θ1) ∨ (A || = θ2)

A || = θ1 ∧ θ2 =(A || = θ1) ∧ (A || = θ2)

A || = e〈θ1, θ2〉=

A || = θ1, if EJeKc = true

A || = θ2, otherwise

Plain condition type check function is encoded as condtype in Coq.

(* ------------------------------------------------------------

| Type check of plain condition

------------------------------------------------------------ *)

Fixpoint condtype (c:cond) (A:elems) : bool :=

match c with

| litCB b ⇒ true

| elemOpV o a n ⇒ true

| elemOpA o a1 a2 ⇒ true

| negC c ⇒ if (condtype c A) then true else false

| conjC c1 c2 ⇒ if (condtype c1 A) && (condtype c2 A) then true else false

| disjC c1 c2 ⇒ if (condtype c1 A) && (condtype c2 A) then true else false

end.

Notation "A ||- c " := (condtype c A) (at level 49).

(*------------------------------type’-----------------------------*)
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B.2 Formal Proof of Correctness of VRA Type System

Theorem variation_preservation : forall e S vq A’ e’,

{ e , S |= vq | (A’, e’) } →
forall c, E[[e]]c = true →

(S[[ S]]c) ||= (Q[[ vq]]c) =set= QT[[ (A’, e’)]]c.

Proof.

intros e S vq A’’ e’’ H c H0.

induction H as [

|

e S HndpRS HndpAS

rn HeR A’ HndpA’ e’

HInVR

|

e S HndpRS HndpAS vq HndpvQ

e’ A’ HndpAA’ Q HndpQ

Hq IHHq Hsbsmp

|

e S HndpRS HndpAS

vq HndpvQ A HndpAA e’ vc

Hq IHHq HCond

|

e e’ S HndpRS HndpAS

vq1 HndpvQ1 vq2 HndpvQ2

A1 HndpAA1 e1 A2 HndpAA2 e2

Hq1 IHHq1 Hq2 IHHq2

|

e S HndpRS HndpAS

vq1 HndpvQ1 vq2 HndpvQ2

A1 HndpAA1 e1 A2 HndpAA2 e2

Hq1 IHHq1 Hq2 IHHq2 HInter

|

e S HndpRS HndpAS

vq1 HndpvQ1 vq2 HndpvQ2

A1 HndpAA1 e1 A2 HndpAA2 e2 op

Hq1 IHHq1 Hq2 IHHq2 HEquiv

].

(** ----------------------------- EmptyRelation - E -----------------------------

*)

-

(* H0 : (E[[ e]] c) = true

-----------------------------------------------

||= (Q[[ empty_v]] c) =set= QT[[ ([], litB false)]] c

*)

unfold configVQuery, configVQtype, configaVelems. simpl. reflexivity.
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(** ----------------------------- Relation - E ----------------------------- *)

-

(* H0 : (E[[ e]] c) = true

-----------------------------------------------

||= (Q[[ rel_v (rn, (A’, e’))]] c) =set= (QT[[ (A’, e ∧ (F) e’)]] c)

*)

unfold configVQuery, configVQtype, configaVelems. simpl semE.

(* H0 : (E[[ e]] c) = true

-----------------------------------------------

||= rel (R[[ (rn, (A’, e’))]] c) =set=

(if (E[[ e]] c) && (E[[ e’]] c) then X[[ A’]] c else [])

*)

(* (E[[ e]] c) = true *)

rewrite H0. rewrite andb_true_l.

(* Proved by definitions InVR_In, configVRelS and ||= rel (rn, A) = A*)

rewrite type__configVRelS. apply InVR_In with (c:=c) in HInVR; try auto.

unfold configVRelS in HInVR. simpl in HInVR.

rewrite ← existsb_In_relS in HInVR. destruct (E[[e’]]c).

rewrite HInVR. all: reflexivity.

(** ----------------------------- Project - E ----------------------------- *)

-

(* Hq: {e, S |= vq | (A’, e’)}

Hsbsmp: subset_vqtype (Q ^^ e) (A’, e’)

-----------------------------------------

||= (Q[[ proj_v Q vq]] c) =set= (QT[[ Q ^^ e]] c)

*)

(* unfold ||=. AE = QT. Simplify IHHq with (E[[ e]] c) = true. *)

simpl type_. rewrite AX_QT. unfold subset_qtype_bool. apply IHHq in H0 as IHHq’.

clear IHHq.

(* Hq: {e, S |= vq | (A’, e’)}

Hsbsmp: subset_vqtype (Q ^^ e) (A’, e’)

IHHq’ : ||= (Q[[ vq]] c) =set= (QT[[ (A’, e’)]] c)

-----------------------------------------

if subset_bool (QT[[ Q]] c) (||= (Q[[ vq]] c)) then

QT[[ Q]] c =set= (QT[[ Q ^^ e]] c)

*)

(* rewrite IHHq’ in goal *)

rewrite (equiv_subset_bool _ IHHq’).

(* Hq: {e, S |= vq | (A’, e’)}

Hsbsmp: subset_vqtype (Q ^^ e) (A’, e’)

-----------------------------------------

if subset_bool (QT[[ Q]] c) (QT[[ (A’, e’)]] c) then

QT[[ Q]] c =set= (QT[[ Q ^^ e]] c)

*)

(* By defintion, subset_vqtype A B = subset QT[[A]] QT[[B]] *)

unfold subset_vqtype in Hsbsmp. specialize Hsbsmp with c.
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(* Hq: {e, S |= vq | (A’, e’)}

Hsbsmp : subset (QT[[ Q ^^ e]] c) (QT[[ (A’, e’)]] c)

-----------------------------------------

if subset_bool (QT[[ Q]] c) (QT[[ (A’, e’)]] c) then

QT[[ Q]] c =set= (QT[[ Q ^^ e]] c)

*)

(* (E[[ e]] c) = true → (QT[[ Q ^^ e]] c) = (QT[[ Q]] c) *)

rewrite (addannot_config_true _ _ _ H0) in Hsbsmp. rewrite (addannot_config_true

_ _ _ H0).

(* Hq: {e, S |= vq | (A’, e’)}

Hsbsmp : subset (QT[[ Q]] c) (QT[[ (A’, e’)]] c)

-----------------------------------------

if subset_bool (QT[[ Q]] c) (QT[[ (A’, e’)]] c) then

QT[[ Q]] c =set= (QT[[ Q]] c)

*)

(* Proved by subset A B ↔ subset_bool A B = true *)

rewrite ← subset_bool_correct in Hsbsmp. rewrite Hsbsmp.

reflexivity.

(** ------------------------------- Select - E ------------------------------ *)

- apply IHHq in H0 as Htype_.

simpl configVQuery.

simpl type_.

(* HCond : {e, (A, e’) |- vc}

Htype_ : ||= (Q[[ vq]] c) =set= (QT[[ (A, e’)]] c)

----------------------------------------------------

(if (QT[[ (A, e’)]] c) ||- (C[[ vc]] c)

then ||= (Q[[ vq]] c) else []) =set= (QT[[ (A, e’)]] c)

*)

(* {e, (A, e’) |- vc} → (QT[[ (A, e’)]] c) ||- (C[[ vc]] c) = true *)

apply variation_preservation_cond with (c:=c) in HCond.

(* HCond : (QT[[ (A, e’)]] c) ||- (C[[ vc]] c) = true

Htype_ : ||= (Q[[ vq]] c) =set= (QT[[ (A, e’)]] c)

----------------------------------------------------

(if (||= (Q[[ vq]] c)) ||- (C[[ vc]] c)

then ||= (Q[[ vq]] c) else []) =set= (QT[[ (A, e’)]] c)

*)

(* v-condition (C[[ vc]] c) is well formed in all equivalent contexts:

Htype_: ||= (Q[[ vq]] c) =set= (QT[[ (A, e’)]] c) →
HCond_: ||= (Q[[ vq]] c) ||- (C[[ vc]] c) = (QT[[ (A, e’)]] c) ||- (C[[

vc]] c) *)
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apply condtype_equiv with (c:=(C[[ vc]] c)) in Htype_ as HCond_.

(* HCond : (QT[[ (A, e’)]] c) ||- (C[[ vc]] c) = true

Htype_ : ||= (Q[[ vq]] c) =set= (QT[[ (A, e’)]] c)

HCond_ : (||= (Q[[ vq]] c)) ||- (C[[ vc]] c) = (QT[[ (A, e’)]] c) ||- (C[[

vc]] c)

----------------------------------------------------

(if (||= (Q[[ vq]] c)) ||- (C[[ vc]] c)

then ||= (Q[[ vq]] c) else []) =set= (QT[[ (A, e’)]] c)

*)

rewrite HCond_, HCond. assumption. auto.

(** ------------------------------- Choice - E ------------------------------ *)

-

(* Hq1 : {e ∧ (F) e’, S |= vq1 | (A1, e1)}

Hq2 : {e ∧ (F) (F) e’, S |= vq2 | (A2, e2)}

H0 : (E[[ e]] c) = true

IHHq1 : (E[[ e ∧ (F) e’]] c) = true → ||= (Q[[ vq1]] c) =set= (QT[[ (A1,

e1)]] c)

IHHq2 : (E[[ e ∧ (F) (F) e’]] c) = true → ||= (Q[[ vq2]] c) =set= (QT[[ (A2,

e2)]] c)

----------------------------------------------------------

||= (Q[[ chcQ e’ vq1 vq2]] c) =set= (QT[[ vqtype_union_vq (A1, e1) (A2, e2)]]

c)

*)

(* Hq1 Hq2: contex_typeannot_rel → {e, _ |= _ | (_, e’)} → ( e → e’) *)

apply context_type_rel in Hq1. rewrite not_sat_not_prop, ← sat_taut_comp_inv

in Hq1.

apply context_type_rel in Hq2. rewrite not_sat_not_prop, ← sat_taut_comp_inv

in Hq2.

specialize Hq1 with c. specialize Hq2 with c.

(* remove e from Hypotheses with (E[[ e]] c) = true *)

simpl semE in *. rewrite H0 in *. rewrite andb_true_l in *. Search negb.

rewrite negb_false_iff in Hq2. rewrite negb_true_iff in IHHq2.

(* Hq1 : (E[[ e’]] c) = false → (E[[ e1]] c) = false

Hq2 : (E[[ e’]] c) = true → (E[[ e2]] c) = false

IHHq1 :(E[[ e’]] c) = true → ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2 :(E[[ e’]] c) = false → ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

----------------------------------------------------------

||= (Q[[ chcQ e’ vq1 vq2]] c) =set= (QT[[ vqtype_union_vq (A1, e1) (A2, e2)]]

c)

*)

(* (Q[[ chcQ e’ vq1 vq2]] c) → (if E[[ e’]] c then Q[[ vq1]] c else Q[[ vq2]]

c) *)

simpl configVQuery.

(* (QT[[ vqtype_union_vq A B]] c) =set= elems_union (QT[[A]] c) (QT[[B]] c) *)
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rewrite configVQType_dist_vqtype_union_vq; try assumption.

repeat (rewrite configVQType_push_annot).

(* (E[[ e’]] c) = true →
(E[[ e2]] c) = false → elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =

(QT[[ (A1, e1)]] c) *)

assert(Hq1’: (E[[ e’]] c) = true → elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2,

e2)]] c) = (QT[[ (A1, e1)]] c)).

intro. apply Hq2 in H. simpl. rewrite H. eauto.

(* (E[[ e’]] c) = false →
(E[[ e1]] c) = false → elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =

(QT[[ (A2, e2)]] c) *)

assert(Hq2’: (E[[ e’]] c) = false → elems_union (QT[[ (A1, e1)]] c) (QT[[

(A2, e2)]] c) =set= (QT[[ (A2, e2)]] c)).

intro. apply Hq1 in H. simpl. rewrite H. rewrite elems_union_nil_l.

reflexivity.

destruct ( E[[ e2]] c); [ apply NoDupElem_NoDup_config | apply NoDup_nil];

auto.

(* IHHq1 :(E[[ e’]] c) = true → ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2 :(E[[ e’]] c) = false → ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

Hq1’ : (E[[ e’]] c) = true →
elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) = (QT[[ (A1, e1)]] c)

Hq2’ : (E[[ e’]] c) = false →
elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =set= (QT[[ (A2, e2)]]

c)

----------------------------------------------------------

||= (if E[[ e’]] c then Q[[ vq1]] c else Q[[ vq2]] c) =set= elems_union (QT[[

(A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

destruct (E[[ e’]] c) eqn: He’.

(* He’ :(E[[ e’]] c) = true

IHHq1 :||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

Hq1’ :elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) = (QT[[ (A1, e1)]]

c)

----------------------------------------------------------

||= (Q[[ vq1]] c) =set= elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

rewrite Hq1’; try reflexivity. apply IHHq1; try reflexivity.

(* He’ :(E[[ e’]] c) = false

IHHq2 : ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

Hq2’ : elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =set= (QT[[ (A2,

e2)]] c)

----------------------------------------------------------

||= (Q[[ vq1]] c) =set= elems_union (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

rewrite Hq2’; try reflexivity. apply IHHq2; try reflexivity.
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(** ------------------------------- Product - E ------------------------------ *)

-

(* HInter : velems_inter A1 A2 =vset= []

H0 : (E[[ e]] c) = true

IHHq1 : (E[[ e]] c) = true → ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2 : (E[[ e]] c) = true → ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

----------------------------------------------------------

||= (Q[[ prod_v vq1 vq2]] c) =set= (QT[[ vqtype_union_vq (A1, e1) (A2, e2)]] c)

*)

(* apply E[[ e]] c) = true in Inductive H *)

apply IHHq2 in H0 as IHHq2’. apply IHHq1 in H0 as IHHq1’.

clear IHHq1. clear IHHq2.

(* (QT[[ vqtype_union_vq A B]] c) =set= elems_union (QT[[A]] c) (QT[[B]] c) *)

rewrite configVQType_dist_vqtype_union_vq; try assumption.

repeat (rewrite configVQType_push_annot).

(* ||= (Q[[ prod_v vq1 vq2]] c) ||= prod (Q[[ vq1]] c) (Q[[ vq2]] c) *)

simpl configVQuery.

(*

----------------------------------------------------

||= prod (Q[[ vq1]] c) (Q[[ vq2]] c) =set= elems_union (QT[[ (A1, e1)]] c)

(QT[[ (A2, e2)]] c)

*)

simpl type_.

(* HInter : velems_inter A1 A2 =vset= []

----------------------------------------------------

if is_disjoint_bool (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c))

elems_union (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c)) =set= elems_union (QT[[

(A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

(* velems_inter A1 A2 =vset= [] → elems_inter [[A1]]c [[A2]]c =set= [] *)

unfold equiv_velems in HInter. unfold vqtype_inter_vq, " =vqtype=", "=avset="

in

HInter.

specialize HInter with c. simpl in HInter.

rewrite configVElemSet_dist_velems_inter in HInter; try assumption.

assert (HInter’: elems_inter (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =set= []

).

simpl. destruct (E[[ e1]] c); [ destruct (E[[ e2]] c); [ assumption |

rewrite elems_inter_nil_r; reflexivity] | rewrite elems_inter_nil_l;

reflexivity ].

(* HInter’ : elems_inter (QT[[ (A1, e1)]] c) (QT[[ (A2, e2)]] c) =set= []

----------------------------------------------------

if is_disjoint_bool (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c))

elems_union (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c)) =set= elems_union (QT[[
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(A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

(* is_disjoint_bool A B = true → elems_inter A B = [] *)

rewrite (is_disjoint_bool_equiv) with (B := (QT[[(A1, e1)]]c)) (B’:= (QT[[(A2,

e2)]] c)); try assumption.

apply nil_equiv_eq in HInter’. rewrite ← is_disjoint_bool_correct in HInter’.

rewrite HInter’.

(* IHHq1’ : ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2’ : ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

----------------------------------------------------

elems_union (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c)) =set= elems_union (QT[[

(A1, e1)]] c) (QT[[ (A2, e2)]] c)

*)

(* Proved by set_union_quiv *)

rewrite (set_union_equiv) with (B := (QT[[(A1, e1)]]c)) (B’:= (QT[[(A2,

e2)]]c)); try (eauto; reflexivity).

(* NoDup assumptions *)

1, 2, 5, 6: try(apply (NoDup_equiv_elems IHHq1’)); try(apply

(NoDup_equiv_elems IHHq2’)).

1, 3, 5, 7 : simpl; destruct ( E[[ e1]] c).

9, 10, 11, 12: simpl; destruct ( E[[ e2]] c).

all: try(apply NoDupElem_NoDup_config; auto); try (apply NoDup_nil).

(** ------------------------------- SetOp - E ------------------------------ *)

-

(* HEquiv : (A1, e1) =vqtype= (A2, e2)

H0 : (E[[ e]] c) = true

IHHq1 : (E[[ e]] c) = true → ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2 : (E[[ e]] c) = true → ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

----------------------------------------------------------

||= (Q[[ setU_v op vq1 vq2]] c) =set= (QT[[ (A1, e1)]] c)

*)

(* apply E[[ e]] c) = true in Inductive H *)

apply IHHq2 in H0 as IHHq2’. apply IHHq1 in H0 as IHHq1’.

clear IHHq1. clear IHHq2.

(* ||= (Q[[ setU_v vq1 vq2]] c) ||= prod (Q[[ vq1]] c) (Q[[ vq2]] c) *)

simpl configVQuery.

(* IHHq1’ : ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

IHHq2’ : ||= (Q[[ vq2]] c) =set= (QT[[ (A2, e2)]] c)

----------------------------------------------------

||= setU op (Q[[ vq1]] c) (Q[[ vq2]] c) =set= (QT[[ (A1, e1)]] c)

*)

simpl type_.

(* HEquiv : (A1, e1) =vqtype= (A2, e2)
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----------------------------------------------------

if equiv_qtype_bool (||= (Q[[ vq1]] c)) (||= (Q[[ vq2]] c))

then ||= (Q[[ vq1]] c) =set= (QT[[ (A1, e1)]] c)

*)

(* (A1, e1) =vqtype= (A2, e2) → (QT[[ (A1, e1)]] c) =set= (QT[[ (A2, e2)]] c)

*)

apply configVQtype_equiv with (c:=c) in HEquiv. rewrite ← IHHq1’, ← IHHq2’ in

HEquiv.

(* Proved by A =set= B → equiv_qtype_bool A B = true *)

rewrite ← equiv_qtype_bool_correct in HEquiv. rewrite HEquiv. assumption.

Qed.
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Appendix C: Formal Encoding of Implicitly Annotated Variational

Query

C.1 Implicit VRA Type System

(* ---------------------------------------------------------------

| Type of (Implicit |- ) variational query

---------------------------------------------------------------

*)

Inductive vtypeImp :fexp → vschema → vquery → vqtype → Prop :=

(* -- EMPTYRELATION-E -- *)

| EmptyRelation_vE_imp : forall e S {HndpRS:NoDupRn (fst S)}

{HndpAS: NODupElemRs S},

vtypeImp e S (empty_v) ([], litB false)

(* -- RELATION-E -- *)

| Relation_vE_imp : forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

rn {Hrn: empRelInempS rn} A_ A’ {HndpA’: NoDupElem

A’} e_ e’,

InVR (rn, (A’, e’)) S →
sat (e ∧ (F) e’) →
vtypeImp e S (rel_v (rn, (A_, e_))) (A’, (e ∧ (F) e’))

(* -- PROJECT-E -- *)

| Project_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq {HndpvQ: NoDupElemvQ vq} e’ A’

{HndpAA’: NoDupElem A’} Q {HndpQ: NoDupElem (fst

Q)},

vtypeImp e S vq (A’, e’) →
subsump_vqtype Q (A’, e’) →
vtypeImp e S (proj_v Q vq) (vqtype_inter_vq Q (A’, e’))

(* -- SELECT-E -- *)

| Select_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq {HndpvQ: NoDupElemvQ vq}

A {HndpAA: NoDupElem A} e’ vc,

vtypeImp e S vq (A, e’) →
{ e, (A, e’) |- vc } →
vtypeImp e S (sel_v vc vq) (A, e’)

(* -- CHOICE-E -- *)

| Choice_vE_imp: forall e e’ S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2:

NoDupElemvQ vq2}
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A1 {HndpAA1: NoDupElem A1} e1 A2 {HndpAA2: NoDupElem

A2} e2,

vtypeImp (e ∧ (F) e’) S vq1 (A1, e1) →
vtypeImp (e ∧ (F) ( (F) e’)) S vq2 (A2, e2) →
vtypeImp e S (chcQ e’ vq1 vq2)

(vqtype_union_vq (A1, e1) (A2, e2))

(* -- PRODUCT-E -- *)

| Product_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2:

NoDupElemvQ vq2}

A1 {HndpAA1: NoDupElem A1} e1 A2 {HndpAA2: NoDupElem

A2} e2 ,

vtypeImp e S vq1 (A1, e1) →
vtypeImp e S vq2 (A2, e2) →
vqtype_inter_vq (A1, e1) (A2, e2) =vqtype= (nil, litB false) →
vtypeImp e S (prod_v vq1 vq2) (vqtype_union_vq (A1, e1) (A2, e2))

(* -- SETOP-E -- *)

| SetOp_vE_imp: forall e S {HndpRS:NoDupRn (fst S)} {HndpAS: NODupElemRs S}

vq1 {HndpvQ1: NoDupElemvQ vq1} vq2 {HndpvQ2: NoDupElemvQ

vq2}

A1 {HndpAA1: NoDupElem A1} e1 A2 {HndpAA2: NoDupElem A2}

e2 op,

vtypeImp e S vq1 (A1, e1) →
vtypeImp e S vq2 (A2, e2) →
equiv_vqtype (A1, e1) (A2, e2) →
vtypeImp e S (setU_v op vq1 vq2) (A1, e1).

Notation "{ e , S |- vq | vt }" := (vtypeImp e S vq vt) (e at level 200).

C.2 Correctness of Implicit VRA Type System

C.2.1 Correctness of Explicitly Annotating Function w.r.t. Implicit

VRA type System

Lemma ImpQ_ImpType_ExpQ_ImpType e S q A:

{ e , S |- q | A } →
exists A’, { e , S |- [q]S | A’ } ∧ A =vqtype= A’.

Proof. intro HImpQ.

(* From Lemma in Appendix C.2.3 *)

apply ImpQ_ImpType_implies_ExpQ_ImpType in HImpQ as HExpQ.

destruct HExpQ as [A’ HExpQ].

(* From Lemma in Appendix C.2.4 *)

apply (ImpQ_ImpType_Equiv_ExpQ_ImpType HImpQ) in HExpQ as HEquiv.
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exists A’. eauto.

Qed.

C.2.2 Correctness of Implicit VRA Type System For Explicitly An-

notated V-query

Lemma ExpQ_ImpType_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):

{ e , S |- [q]S | A } →
exists A’, { e , S |= [q]S | A’ } ∧ A =vqtype= A’.

Proof. intro HImp.

(* From Lemma in Appendix C.2.5 *)

apply ExpQ_ImpType_implies_ExpQ_ExpType in HImp as HExp;

try assumption.

destruct HExp as [A’ HExp].

(* From Lemma in Appendix C.2.6 *)

apply (ExpQ_ImpType_Equiv_ExpQ_ExpType HndpQ HImp) in HExp as HEquiv.

exists A’. eauto.

Qed.

C.2.3 ImpQuery ImpType implies ExpQuery ImpType

Lemma ImpQ_ImpType_implies_ExpQ_ImpType e S q A:

{ e , S |- q | A } →
exists A’, { e , S |- [q]S | A’ }.

Proof.

generalize dependent A.

generalize dependent e.

induction q; destruct A as (A, ea);

intros HImp.

{ (* Relation - E *)

destruct v as (rn, (A_, e_)).

simpl in HImp. simpl.

inversion HImp as [| eInv SInv HndpRSInv HndpASInv rnInv HeRInv A_Inv

A’Inv HndpA’Inv e_Inv e’Inv

HInVRInv | | | | |]; subst.

rename e’Inv into e’.

apply InVR_findVR in HInVRInv as HInFindInv; try assumption.

rewrite HInFindInv.
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unfold getvs, getf. simpl.

exists ((A, e ∧ (F) e’)).

apply Relation_vE_imp; try assumption.

}

{ (* Projection - E *)

simpl in HImp. simpl.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

destruct a as (Ap, ep).

inversion HImp as [| |

eInv SInv HndpRSInv HndpASInv vqInv HndpvQInv

e’Inv A’Inv HndpAA’Inv QInv HndpQInv

HqInv HsbsmpInv | | | |]; subst.

apply IHq in HqInv as Hqs. destruct Hqs as [(Aqse, eqse) Hqs].

apply vtypeImpNOTC_correct in Hqs as HqSTine; try assumption.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.

apply eq_equiv_vqtype in HqST. (*as HqSTeqv.*)

apply (contex_intro_NOTC (litB true))

with (e’:=e) (eq’:= (eqs ∧ (F) e) ) in HqST; try assumption; try reflexivity.

assert(Htrue_e: (litB true ∧ (F) e) =e= e ).

{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.

rewrite HqST in Htrue_e.

rewrite HqSTine in Htrue_e.

exists (vqtype_inter_vq (vqtype_inter_vq (Ap, ep) (Aqs, eqs)) (Aqse, eqse)).

apply Project_vE_imp; try assumption.

all: apply NoDupElem_vtypeImp in Hqs as HndpAqse; try assumption;

apply NoDupElemvQ_ImptoExp with (S:=S) in HndpvQInv; try assumption;

auto.

{ unfold vqtype_inter_vq. simpl. simpl in *.
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apply NoDupElem_velems_inter; assumption. }

}

{ (* Selection - E *)

simpl in HImp. simpl.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

inversion HImp as [| | |

eInv SInv HndpRSInv HndpASInv vqInv HndpvQInv

A’Inv HndpAA’Inv e’Inv vcInv

HqInv HcondInv | | | ]; subst.

apply IHq in HqInv as Hqs. destruct Hqs as [(Aqse, eqse) Hqs].

apply vtypeImpNOTC_correct in Hqs as HqSTine; try assumption.

exists ((Aqse, eqse)).

apply Select_vE_imp; try assumption.

all: apply NoDupElem_vtypeImp in Hqs as HndpAqse; try assumption;

apply NoDupElemvQ_ImptoExp with (S:=S) in HndpvQInv; try assumption.

pose (ImpQ_ImpType_Equiv_ExpQ_ImpType HqInv Hqs) as HqeqvqS.

apply vcondtype_equiv with (e:=e) (vc:=v) in HqeqvqS; auto.

}

4:{ (* Empty - E *)

inversion HImp; subst.

simpl. exists (nil, litB false).

assumption.

}

all: (* Choice- E / Porduct - E / SetOP -E *)

inversion HImp as [| | |

|

eInv e’Inv SInv HndpRSInv HndpASInv

vq1Inv HndpvQ1Inv vq2Inv HndpvQ2Inv

A1Inv HndpAA1Inv e1Inv A2Inv HndpAA2Inv e2Inv

Hq1Inv Hq2Inv

|

eInv SInv HndpRSInv HndpASInv

vq1Inv HndpvQ1Inv vq2Inv HndpvQ2Inv

A1Inv HndpAA1Inv e1Inv A2Inv HndpAA2Inv e2Inv

Hq1Inv Hq2Inv HInterInv

|
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eInv SInv HndpRSInv HndpASInv

vq1Inv HndpvQ1Inv vq2Inv HndpvQ2Inv

A1Inv HndpAA1Inv e1Inv A2Inv HndpAA2Inv e2Inv opInv

Hq1Inv Hq2Inv HEquivInv ]; subst;

apply IHq1 in Hq1Inv as Hq1S; apply IHq2 in Hq2Inv as Hq2S;

destruct Hq1S as [(A1, e1) Hq1S];

destruct Hq2S as [(A2, e2) Hq2S];

apply NoDupElem_vtypeImp in Hq1S as HndpA1; try assumption;

apply NoDupElem_vtypeImp in Hq2S as HndpA2; try assumption;

try (apply NoDupElemvQ_ImptoExp; assumption);

simpl;

try( exists (vqtype_union_vq (A1, e1) (A2, e2));

apply Choice_vE_imp with (A2:=A2) (e2:=e2)

);

try( exists (vqtype_union_vq (A1, e1) (A2, e2));

apply Product_vE_imp with (A2:=A2) (e2:=e2)

);

try( exists (A1, e1);

apply SetOp_vE_imp with (A2:=A2) (e2:=e2)

);

try assumption;

try (apply NoDupElemvQ_ImptoExp; assumption);

pose (ImpQ_ImpType_Equiv_ExpQ_ImpType Hq1Inv Hq1S) as Hq1eqvq1S;

pose (ImpQ_ImpType_Equiv_ExpQ_ImpType Hq2Inv Hq2S) as Hq2eqvq2S.

{ (* Product_vE_imp → velems_inter_vq (A1, e1) (A2, e2) =vqtype= [] *)

pose (vqtype_inter_vq_equiv ) as HInterEqv.

apply HInterEqv with (A:=(A1Inv, e1Inv)) (A’:=(A1, e1)) in Hq2eqvq2S as

HInterEqv’;

try (simpl; assumption).

clear HInterEqv. rename HInterEqv’ into HInterEqv.

rewrite HInterInv in HInterEqv. symmetry. assumption.

}

{ (* SetOp_vE_imp → (A1, e1) =vqtype= (A2, e2) *)

symmetry in Hq1eqvq1S.

transitivity (A, ea); try assumption.

transitivity (A2Inv, e2Inv); try assumption.

}

Qed.
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C.2.4 ImpQuery ImpType Equiv ExpQuery ImpType

Lemma ImpQ_ImpType_Equiv_ExpQ_ImpType e S q A A’:

{ e , S |- q | A } →
{ e , S |- [q]S | A’ } →
A =vqtype= A’.

Proof.

generalize dependent A’. generalize dependent A. generalize dependent e.

induction q; destruct A as (A, ea); destruct A’ as (A’, ea’); intros HImp HExp.

{ (* Relation - E *)

inversion HImp; subst. simpl ImptoExp in HExp.

apply InVR_findVR in H3 as HInFind. rewrite HInFind in HExp.

unfold getvs in HExp. unfold getf in HExp.

simpl in HExp. inversion HExp; subst.

apply InVR_findVR in H2 as HInFind’. rewrite HInFind in HInFind’.

inversion HInFind’; subst. reflexivity. all: assumption.

}

{ (* Projection - E *)

simpl in HImp.

simpl in HExp.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

destruct a as (Ap, ep).

inversion HImp as [| |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

e’Imp A’Imp HndpAA’Imp QImp HndpQImp

HqImp HsbsmpImp | | | |]; subst.

inversion HExp as [| |

eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp

e’Exp A’Exp HndpAA’Exp QExp HndpQExp

HqExp HsbsmpExp| | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.
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apply eq_equiv_vqtype in HqST.

apply (contex_intro_NOTC (litB true))

with (e’:=e) (eq’:= (eqs ∧ (F) e) ) in HqST; try assumption; try reflexivity.

apply vtypeImpNOTC_correct in HqExp as HqSTine; try assumption.

apply IHq with (A:=(A’Imp, e’Imp)) in HqExp as Hqe; try assumption.

apply eq_equiv_vqtype in HqSTine.

(* equivalent context intro *)

assert(Htrue_e: (litB true ∧ (F) e) =e= e ).

{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.

rewrite HqST in Htrue_e. rewrite HqSTine in Htrue_e.

apply vqtype_inter_vq_equiv_Imp_Exp with (Ap:=Ap) (ep:=ep) (A’Imp:=A’Imp)

(e’Imp:=e’Imp)

in Htrue_e as Hvqtype_inter; try (simpl; assumption).

}

{ (* Selection - E *)

simpl in HImp.

simpl in HExp.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

inversion HImp as [| | |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

A’Imp HndpAA’Imp e’Imp vcImp

HqImp HcondImp | | | ]; subst.

inversion HExp as [| | |

eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp

A’Exp HndpAA’Exp e’Exp vcExp

HqExp HcondExp | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.

apply IHq with (A’:=(A’, ea’)) in HqImp; assumption.

}

4:{ (* Empty - E *)

inversion HImp; subst. simpl ImptoExp in HExp.

inversion HExp; subst. reflexivity.
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}

all: inversion HImp as

[ |

| | | e0 f0 S0 HnS HnAS

q10 HnQ1 q20 HnQ2

A1 HnA1 e1 A2 HnA2 e2

Hq1 Hq2

| e0 S0 HnS HnAS

q10 HnQ1 q20 HnQ2

A1 HnA1 e1 A2 HnA2 e2

Hq1 Hq2

| e0 S0 HnS0 HnAS0

q10 HnQ10 q20 HnQ20

A1 HnA1 e1 A2 HnA2 e2 op

Hq1 Hq2 HEquiv]; subst;

simpl in HExp; inversion HExp as

[ |

| | | e0 f0 S0 HnSs HnASs

q10 HnQ1s q20 HnQ2s

A1s HnA1s e1s A2s HnA2s e2s

Hq1s Hq2s

| e0 S0 HnSs HnASs

q10 HnQ1s q20 HnQ2s

A1s HnA1s e1s A2s HnA2s e2s

Hq1s Hq2s

| e0 S0 HnSs HnASs

q10 HnQ1s q20 HnQ2s

A1s HnA1s e1s A2s HnA2s e2s ops

Hq1s Hq2s HEquivs]; subst.

1, 2: apply IHq1 with (A’:=(A1s, e1s)) in Hq1;

apply IHq2 with (A’:=(A2s, e2s)) in Hq2;

try (assumption);

apply vqtype_union_vq_equiv with (A:=(A1, e1)) (A’:=(A1s, e1s)) in Hq2;

assumption.

apply IHq1 with (A’:=(A’, ea’)) in Hq1; assumption.

Qed.

C.2.5 ExpQuery ImpType implies ExpQuery ExpType

Lemma ExpQ_ImpType_implies_ExpQ_ExpType e S q A (HndpQ: NoDupElemvQ q):

{ e , S |- [q]S | A } →
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exists A’, { e , S |= [q]S | A’ }.

Proof.

generalize dependent A.

generalize dependent e.

induction q; destruct A as (A, ea);

intros HImp.

{ (* Relation - E *)

destruct v as (rn, (A_, e_)).

simpl in HImp.

destruct (findVR rn S) as (rn_, (Ar, er)) eqn: HfindVR.

unfold getvs, getf in HImp. simpl in HImp.

inversion HImp as [| eImp’ SImp’ HndpRSImp’ HndpASImp’

rnImp’ HeRImp’ A_Imp’ A’Imp’ HndpA’Imp’ e_Imp’ e’Imp’

HInVRImp |

| | | |]; subst.

apply InVR_findVR in HInVRImp

as HInFindImp; try assumption.

rewrite HfindVR in HInFindImp.

inversion HInFindImp; subst.

simpl. rewrite HfindVR.

unfold getvs, getf. simpl.

exists (A, (e ∧ (F) e’Imp’)).

apply Relation_vE; try assumption.

}

{ (* Projection - E *)

rename a into Q.

(*

HImp: {e, S |- [proj_v Q q] S | (A, ea)}

--------------------------------------------------

exists A’ : vqtype, {e, S |= [proj_v Q q] S | A’}

Proof sketch:

HImp: {e, S |- [proj_v Q q] S | (A, ea)}
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S1. simpl ([] S) (in HImp and Goal) with

1. vtypeImpNOTC (litB true) S ([q] S) := (Aqs, eqs) -- HqST

:= { litB true, S |- ([q] S) | (Aqs, eqs) }

2. Q/-\Qs = (vqtype_inter_vq Q (Aqs, eqs))

HImp: {e, S |- proj_v (Q/-\Qs) ([q] S) | (A, ea)}

--------------------------------------------------

exists A’ : vqtype, {e, S |= proj_v (Q/-\Qs) [q] S | A’}

*)

simpl in HImp. simpl.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

remember (vqtype_inter_vq Q (Aqs, eqs)) as QiQs.

(*

S2. inversion HImp to get (A, ea)

3. {e, S |- ([q] S) | (Aqse, eqse)} - HqImp

4. Q/-\Qs/-\Qse := vqtype_inter_vq (P/-\Qt) (Aqse, eqse)

HImp: {e, S |- proj_v (Q/-\Qs) ([q] S) | Q/-\Qs/-\Qse }

*)

inversion HImp as [| |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

e’Imp A’Imp HndpAA’Imp QImp HndpQImp

HqImp HsbsmpImp | | | |]; subst.

(*S1.1 *) apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try

assumption.

rename e’Imp into eqse.

rename A’Imp into Aqse.

remember (vqtype_inter_vq Q (Aqs, eqs)) as QiQs.

remember (velems_inter (fst QiQs) Aqse) as QiQsiQseA.

remember (snd QiQs ∧ (F) eqse) as QiQsiQsee.

(*

S3. relate 1-HqST 3-HqImp with context intro (litB true → litB true ∧ e → e *

3Hqst:{ litB true, S |- ([q] S) | (Aqs, eqs ) } →
S3.1 { litB true ∧ e, S |- ([q] S) | (Aqs, eqs∧ e) } →
S3.2 { e, S |- ([q] S) | (Aqs, eqs∧ e) } →

S3.3 from 3:{ e, S |- ([q] S) | (Aqse, eqse) } and S3.2

4.1: HqsA: Aqse =vqtype= Aqs

4.2: Hqse: eqse =e= eqs ∧ e
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3: { e, S |- ([q] S) | (Aqs, eqse) } -- HqImp *)

(*S3.1 intro e in context: litB true → litB true ∧ e *)

apply eq_equiv_vqtype in HqST.

apply (contex_intro_NOTC (litB true))

with (e’:=e) (eq’:= (eqs ∧ (F) e) ) in HqST; try assumption; try reflexivity.

(*S3.2*)

(* litB true ∧ e =e= e *) assert(HqsAe: (litB true ∧ (F) e) =e= e ).

{ unfold equivE. simpl. reflexivity. }

(* contex equiv implies type euiv → *)

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in HqsAe; try assumption.

(* inductive type to type function - ([q] S) in e *)

apply vtypeImpNOTC_correct in HqImp as HqImpTine; try assumption.

rewrite HqST in HqsAe.

rewrite HqImpTine in HqsAe.

(*

S4. get exp type from IHq that is equiv to imp

S4.1 apply IHq in 4 to get 5

Hexp: { e, S |= ([q] S) | (Aqse’, eqse’) } ---- HqExp

S4.2 apply imp exp type quiv to 4 and 5

HqsAe’: (Aqse’ =vset= Aqse) ∧ (eqse’ =e= eqs ∧ e)

*)

apply IHq in HqImp as HqExp.

destruct HqExp as [(Aqse’, eqse’) HqExp].

apply NoDupElem_vtype in HqExp as HndpAqse’; try assumption.

(*S4.2 ExpQ_ImpType_Equiv_ExpQ_ExpType *)

pose ExpQ_ImpType_Equiv_ExpQ_ExpType as HqsAe’.

apply HqsAe’ with (A:=(Aqse, eqse)) in HqExp as HqsAe’’; try assumption.

clear HqsAe’. rename HqsAe’’ into HqsAe’.

(*

S5. exists (Q/-\Qs)^^e (in Goal)

----------------------------------------------------

{e, S |= proj_v (Q/-\Qs) [q] S | (Q/-\Qs)^^e} *)

exists (QiQs^^e).



106

(*

S6. apply Proj_v in Goal with (A’ := Aqse’) ∧ (e’ := eqse’)

--------------------------------------------(1/2)

{ e, S |= ([q] S) | (Aqse’, eqse’) }

S7. assumption 7. Qed.

--------------------------------------------(2/2)

subset_vqtype (Q/-\Qs)^^e (Aqse’, eqse’)

*)

apply Project_vE with (A’:=Aqse’) (e’:=eqse’);(*S7*)try assumption.

(*

S8. (Q/-\Qs)^^e → (Q/-\(Aqs, eqs))^^e → (Q/-\(Aqs, eqs∧ e))

S9. Aqse’ =vset= Aqs ; eqsq’ =e= eqse =e= eqs ∧ e

------------------------------------------------

subset_vqtype (Q/-\(Aqs, eqs∧ e)) (Aqs, eqs∧ e)

S10. subset_vqtype (A/-\B) B

Qed.

*)

rewrite HeqQiQs. destruct Q as (Aq, eq).

unfold addannot. simpl fst. simpl snd.

rewrite ← subset_vqtype_correctness;

try (simpl; assumption).

unfold subset_vqtype_exp, subset_velems_exp. intros.

destruct H as [HIn He]. apply In_config_true with (c:=c) in HIn; try assumption.

unfold avelems_velems in HIn. simpl fst in *. simpl snd in *.

rewrite In_config_exists_true. unfold avelems_velems. simpl fst. simpl snd.

rewrite configVElemSet_push_annot in *. Search velems_inter.

simpl in HIn.

simpl.
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unfold " =vqtype=", "=avset=" in *. simpl in *. specialize HqsAe’ with c.

specialize HqsAe with c.

destruct ((E[[ eq]] c) && (E[[ eqs]] c) && (E[[ e]] c)) eqn:Heqeqse.

{ rewrite ← In_config_exists_true in HIn. destruct HIn as [eInter HIn].

apply In_velems_inter in HIn.

rewrite In_config_exists_true in HIn.

assert (Heqse: (E[[ eqs]] c) && (E[[ e]] c) = true).

{ rewrite ← andb_assoc in Heqeqse. rewrite andb_true_iff in Heqeqse.

destruct Heqeqse; assumption. }

rewrite Heqse in HqsAe.

destruct (E[[ eqse’]] c);

rewrite HqsAe’ in HqsAe;

unfold "=set=" in HqsAe; specialize HqsAe with x;

destruct HqsAe as [HqsAeIn HqsAeC];

rewrite ← HqsAeIn; auto.

}

{ destruct HIn. }

all: rewrite HeqQiQs in HndpQImp; unfold vqtype_inter_vq in HndpQImp;

simpl in HndpQImp; try (simpl; assumption).

all: inversion HndpQ; subst; auto.

}

{ (* Selection - E *)

simpl in HImp. simpl.

inversion HndpQ as [ | | c’ q’ Hndpq | | | |]; subst.

inversion HImp as [| | |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

A’Imp HndpAA’Imp e’Imp vcImp

HqImp HcondImp | | |]; subst.

apply IHq in HqImp as HqExp; try auto.

destruct HqExp as [(A’, ea’) HqExp].

exists (A’, ea’). apply Select_vE; try assumption.

apply NoDupElem_vtype in HqExp as HndpAqse’; try assumption.

(*S4.2 ExpQ_ImpType_Equiv_ExpQ_ExpType *)
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pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpq HqImp HqExp) as Hqimpexp;

try assumption.

apply vcondtype_equiv with (e:=e) (vc:=v) in Hqimpexp; assumption.

}

4: { (* Empty - E *)

simpl in HImp. inversion HImp; subst.

simpl. exists (nil, litB false).

apply EmptyRelation_vE; try assumption. }

(* Choice - E/ Product - E/ SetOp - E *)

all: simpl in HImp; simpl;

inversion HndpQ as [| |

| f’ q1’ q2’ Hndpq1 Hndpq2

| q1’ q2’ Hndpq1 Hndpq2

| op’ q1’ q2’ Hndpq1 Hndpq2 |]; subst;

inversion HImp as [| | |

|

eImp e’Imp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp

Hq1Imp Hq2Imp

|

eImp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp

Hq1Imp Hq2Imp HInterImp

|

eImp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp opImp

Hq1Imp Hq2Imp HEquivImp ]; subst;

apply IHq1 in Hq1Imp as Hq1Exp; try auto;

apply IHq2 in Hq2Imp as Hq2Exp; try auto;

(*1, 5, 9: *)destruct Hq1Exp as [(A1Exp, e1Exp) Hq1Exp];

destruct Hq2Exp as [(A2Exp, e2Exp) Hq2Exp];

apply NoDupElem_vtype in Hq1Exp as HndpA1Exp; try assumption;

apply NoDupElem_vtype in Hq2Exp as HndpA2Exp; try assumption;

try( exists (vqtype_union_vq (A1Exp, e1Exp) (A2Exp, e2Exp));

apply Choice_vE with (A2:=A2Exp) (e2:=e2Exp)

);

try( exists (vqtype_union_vq (A1Exp, e1Exp) (A2Exp, e2Exp));

apply Product_vE with (A2:=A2Exp) (e2:=e2Exp)
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);

try( exists (A1Exp, e1Exp);

apply SetOp_vE with (A2:=A2Exp) (e2:=e2Exp)

);

try assumption;

pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpq1 Hq1Imp Hq1Exp) as Hq1impexp;

pose (ExpQ_ImpType_Equiv_ExpQ_ExpType Hndpq2 Hq2Imp Hq2Exp) as Hq2impexp.

{ (* Product_vE_imp → velems_inter A1 A2 =vset= [] *)

pose (vqtype_inter_vq_equiv ) as HInterEqv.

apply HInterEqv with (A:=(A1Imp, e1Imp)) (A’:=(A1Exp, e1Exp)) in Hq2impexp as

HInterEqv’;

try (simpl; assumption).

clear HInterEqv. rename HInterEqv’ into HInterEqv.

rewrite HInterImp in HInterEqv. symmetry. assumption.

}

{ (* SetOp_vE_imp → (A1, e1) =vqtype= (A2, e2) *)

symmetry in Hq1impexp.

transitivity (A, ea); try assumption.

transitivity (A2Imp, e2Imp); try assumption.

}

Qed.

C.2.6 ExpQuery ImpType Equiv ExpQuery ExpType

Lemma ExpQ_ImpType_Equiv_ExpQ_ExpType e S q A A’ (HndpQ: NoDupElemvQ q):

{ e , S |- [q]S | A } →
{ e , S |= [q]S | A’ } →
A =vqtype= A’.

Proof.

generalize dependent A’.

generalize dependent A.

generalize dependent e.

induction q; destruct A as (A, ea);

destruct A’ as (A’, ea’);

intros HImp HExp.

{ (* Relation - E *)

destruct v as (rn, (A_, e_)).

simpl in HImp.

simpl in HExp.

destruct (findVR rn S) as (rn_, (Ar, er)) eqn: HfindVR.
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unfold getvs, getf in HImp. simpl in HImp.

unfold getvs, getf in HExp. simpl in HExp.

inversion HImp as [| eImp’ SImp’ HndpRSImp’ HndpASImp’

rnImp’ HeRImp’ A_Imp’ A’Imp’ HndpA’Imp’ e_Imp’ e’Imp’

HInVRImp |

| | | |]; subst.

inversion HExp as [| eExp’ SExp’ HndpRSExp’ HndpASExp’

rnExp’ HeRExp’ A’Exp’ HndpA’Exp’ e’Exp’

HInVRExp HsatExp |

| | | |]; subst.

apply InVR_findVR in HInVRImp

as HInFindImp; try assumption.

apply InVR_findVR in HInVRExp

as HInFindImp’; try assumption.

rewrite HInFindImp in HInFindImp’.

inversion HInFindImp’; subst.

reflexivity.

(* =vset= *)reflexivity.

(* =e= *)simpl_equivE. destruct (E[[ ea’]] c) eqn:Hea.

apply HsatExp in Hea. simpl in Hea. rewrite Hea. eauto.

eauto. *)

}

{ (* Projection - E *)

simpl in HImp.

simpl in HExp.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

destruct a as (Ap, ep).

inversion HImp as [| |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

e’Imp A’Imp HndpAA’Imp QImp HndpQImp

HqImp HsbsmpImp | | | |]; subst.

inversion HExp as [| |

eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp

e’Exp A’Exp HndpAA’Exp QExp HndpQExp
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HqExp HsbsmpExp| | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.

inversion HndpQ as [| | Q’ q’ HndpAp HndpvQq | | | |]; subst.

apply eq_equiv_vqtype in HqST.

apply (contex_intro_NOTC (litB true))

with (e’:=e) (eq’:= (eqs ∧ (F) e) ) in HqST; try assumption; try reflexivity.

apply vtypeImpNOTC_correct in HqImp as HqSTine; try assumption.

apply eq_equiv_vqtype in HqSTine.

(* equivalent context intro *)

assert(Htrue_e: (litB true ∧ (F) e) =e= e ).

{ unfold equivE. simpl. reflexivity. }

apply (contex_equiv_NOTC) with (S:=S) (q:=[q] S) in Htrue_e; try assumption.

rewrite HqST in Htrue_e. rewrite HqSTine in Htrue_e.

symmetry. rewrite vqtype_fexp_assoc.

apply vqtype_inter_vq_equiv_Imp_Exp with (Ap:=Ap) (ep:=ep) (A’Imp:=A’Imp)

(e’Imp:=e’Imp)

in Htrue_e as Hvqtype_inter; try reflexivity; try (simpl; assumption).

rewrite vqtype_inter_vq_equiv with (A’:=(Ap, ep)) (B’:=(Aqs, eqs ∧ (F) e)) in

Hvqtype_inter;

try auto; try (symmetry; assumption); try reflexivity.

}

{ (* Selection - E *)

simpl in HImp.

simpl in HExp.

destruct (vtypeImpNOTC (litB true) S ([q] S)) as (Aqs, eqs) eqn:HqST.

inversion HImp as [| | |

eImp SImp HndpRSImp HndpASImp vqImp HndpvQImp

A’Imp HndpAA’Imp e’Imp vcImp

HqImp HcondImp | | |]; subst.

inversion HExp as [| | |

eExp SExp HndpRSExp HndpASExp vqExp HndpvQExp
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A’Exp HndpAA’Exp e’Exp vcExp

HqExp HcondExp | | |]; subst.

apply NoDupElem_vtypeImpNOTC’ in HqST as HndpelemAqs; try assumption.

inversion HndpQ; subst.

apply IHq with (A’:=(A’, ea’)) in HqImp; try assumption.

}

4:{ (* Empty - E *)

inversion HImp; subst. simpl ImptoExp in HExp.

inversion HExp; subst. reflexivity.

}

all: (* Choice - E / Product - E/ SetOp -E *)

simpl in HImp;

simpl in HExp;

inversion HndpQ as [| |

| f’ q1’ q2’ Hndpq1 Hndpq2

| q1’ q2’ Hndpq1 Hndpq2

| op’ q1’ q2’ Hndpq1 Hndpq2 | ]; subst;

inversion HImp as [| | |

|

eImp e’Imp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp

Hq1Imp Hq2Imp

|

eImp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp

Hq1Imp Hq2Imp HInterImp

|

eImp SImp HndpRSImp HndpASImp

vq1Imp HndpvQ1Imp vq2Imp HndpvQ2Imp

A1Imp HndpAA1Imp e1Imp A2Imp HndpAA2Imp e2Imp opImp

Hq1Imp Hq2Imp HEquivImp ]; subst;

inversion HExp as [| | |

|

eExp e’Exp SExp HndpRSExp HndpASExp

vq1Exp HndpvQ1Exp vq2Exp HndpvQ2Exp

A1Exp HndpAA1Exp e1Exp A2Exp HndpAA2Exp e2Exp

Hq1Exp Hq2Exp
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|

eExp SExp HndpRSExp HndpASExp

vq1Exp HndpvQ1Exp vq2Exp HndpvQ2Exp

A1Exp HndpAA1Exp e1Exp A2Exp HndpAA2Exp e2Exp

Hq1Exp Hq2Exp HInterExp

|

eExp SExp HndpRSExp HndpASExp

vq1Exp HndpvQ1Exp vq2Exp HndpvQ2Exp

A1Exp HndpAA1Exp e1Exp A2Exp HndpAA2Exp e2Exp opExp

Hq1Exp Hq2Exp HEquivExp ]; subst;

apply (IHq1 Hndpq1 _ _ _ Hq1Imp) in Hq1Exp as Hq1Eq;

apply (IHq2 Hndpq2 _ _ _ Hq2Imp) in Hq2Exp as Hq2Eq;

(* 3: SetOp - E *) try assumption;

try ( apply vqtype_union_vq_equiv with (A:=(A1Imp, e1Imp)) (A’:=(A1Exp, e1Exp)) in

Hq2Eq;

assumption).

Qed.


