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Chapter 1 Introduction

Managing variation in databases is a perennial problem in database literature that

appears in different forms and contexts [70, 13, 20, 32, 17] and is unavoidable [68].

Variation in databases mainly arises when multiple database instances conceptu-

ally represent the same database but differ in their schema, content, or constraints.

Specific kinds of variation in databases have been addressed by context-specific

solutions, such as schema evolution [53, 19, 9, 67, 56], data integration [28], tem-

poral databases [44, 59, 71], and database versioning [18, 40]. However, there is

no generic solution that addresses all kind of variation in databases. We motivate

the need for a generic solution to variation in databases in Section 1.1.

The major contribution of this thesis is the variational database framework, a

generic relational database framework that explicitly accounts for database varia-

tion, and variational relational algebra, a query language for our framework that

allows for information extraction from a variational database. The framework is

generic because it can encode any kind of variation in databases. Additionally and

more importantly, it is designed such that it can satisfy any information need that

a user may have in a variational database scenario.

In addition to a formal description of the variational database framework and

variational relational algebra and some theoretical results, this thesis distributes

and presents two variational datasets (including both a variational database and
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a set of queries) as well as a variational database management system that im-

plements the variational database framework as an abstraction layer on top of a

traditional relational database management system in Haskell. Section 1.2 enu-

merates the specific contributions in the context of an outline of the structure of

the rest of the thesis.

1.1 Motivation and Impact

Managing variation in databases is a perennial problem that appears in different

forms and contexts [70, 13, 20, 32, 17]. In databases, variation arises when several

database instances, which may differ in schema, content, or constraints, concep-

tually represent the same database. Existing work on database variation focuses

on specific kinds of variation such as schema evolution [53, 19, 9, 67, 56], data

integration [28], temporal database [44, 59, 71], and database versioning [18, 40].

These works provide solutions specific to the kinds of variation they address, but

do not provide a general-purpose solution to managing variation in databases.

This is a problem because new kinds of variation frequently arise (illustrated in

Section 1.1.2) and different kinds of variation often interact (illustrated in Sec-

tion 1.1.1), and the existing solutions are often ill-suited to these scenarios.

Schema evolution is an example of a kind of variation in databases that is

well-supported [53, 19, 9, 67, 56]. In the schema evolution scenario, a database’s

schema changes over time as the database is extended or refactored to support

new information needs, and the goal is to automatically migrate data and queries
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to new versions of the database. Thus, schema evolution is a kind of variation

over the dimension of “time”, and each version of the database can be viewed as

a variant of the same database.

However, other kinds of database variation are less well supported. One exam-

ple arises in the context of software product lines (SPLs) [7]. SPL approaches are

used when the same code base is used to produce multiple different variants of a

software system, customized with different sets of features or tailored for different

clients. Naturally, the data requirements of each variant of an SPL may differ [66].

SPL researchers have developed various encodings that allow describing variation

in the data model among variants by annotating elements of the model with fea-

tures from the SPL [66, 64, 2]. These solutions can generate a database schema

variant for each software variant of the SPL. Unfortunately, these solutions ad-

dress only variation in the data model but do not extend to the level of data or

queries. The lack of variation support in queries leads to unsafe techniques such

as encoding different variants of query through string munging, while the lack of

variation support in data precludes testing with multiple variants of a database at

once.

Worse, still, is when multiple kinds of variation interact. Although structural

variation over time is well-supported via schema evolution, and structural variation

in “space” is partially supported by recent SPL research, there is no support for

the inevitable evolution of an SPL’s variational data model [38]. Nor do existing

approaches support variation across all levels of a relational database: schema,

queries, and content. In this thesis, we argue that schema evolution, SPL-like



4

variation, and other forms of database variation, such as data integration and

database versioning, are all facets of a similar problem that can be addressed by

treating variation as a general and orthogonal concern in relational databases [10,

11, 13, 12]. A significant advantage of treating different kinds of variation uniformly

is that it is easy to support the interaction of multiple kinds of variation, and

to coordinate variation in structure with corresponding variation in queries and

content. We illustrate these aspects throughout the thesis using a motivating

example described in Section 1.1.1.

To summarize, variation in databases is abundant and inexorable [68] and arises

in many different contexts. Existing solutions are specialized to address specific

kinds of variation but do not support the interaction of multiple kinds of variation,

nor many variation scenarios that cut across different levels of a database. The

lack of support for these scenarios negatively impacts database administrators,

data analysts, and software developers [38].

1.1.1 Motivating Example

In this section, we motivate VDBMS by illustrating the scenario described in Sec-

tion 1.1, where two kinds of database variation interact, producing a scenario that

is not well-supported by any existing tools. The scenario involves the evolution

over time of a database-backed SPL.

An SPL uses a set of boolean variables called features to indicate functional-

ity that may be included or not in each software variant. Consider an SPL that
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Table 1.1: Schema variants of the employee database developed for multiple soft-
ware variants by an SPL. Note that an educational database variant must contain
a basic database variant too.

(a) Database schema variants for basic software variants.

Temporal Features basic Database Schema Variants

V1

engineerpersonnel (empno, name, hiredate, title, deptname)
otherpersonnel (empno, name, hiredate, title, deptname)
job (title, salary)

V2
empacct (empno, name, hiredate, title, deptname)
job (title, salary)

V3

empacct (empno, name, hiredate, title, deptno)
job (title, salary)
dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate)

V4

empacct (empno, hiredate, title, deptno, std , instr)
job (title, salary)
dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate, name)

V5

empacct (empno, hiredate, title, deptno, std , instr , salary)
dept (deptname, deptno, managerno, stdnum, instrnum)
empbio (empno, sex , birthdate, firstname, lastname)

(b) Database schema variants for educational software variants.

Temporal Feature educational Database Schema Variants

T1
course (coursename, teacherno)
student (studentno, coursename)

T2
course (courseno, coursename, teacherno)
student (studentno, courseno)

T3

course (courseno, coursename)
teach (teacherno, courseno)
student (studentno, courseno, grade)

T4

ecourse (courseno, coursename)
course (courseno, coursename, time, class)
teach (teacherno, courseno)
student (studentno, courseno, grade)

T5

ecourse (courseno, coursename, deptno)
course (courseno, coursename, time, class, deptno)
teach (teacherno, courseno)
take (studentno, courseno, grade)
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generates management software for companies. It has a feature edu that indicates

whether a company provides educational resources, such as courses for its em-

ployees. Software variants in which edu is enabled (i.e., edu = true) provide this

additional functionality while variants where it is disabled provide only the basic

functionality.

If edu is the only optional feature, then at any point in time, this SPL has two

variants: basic and educational. However, each variant will also evolve as the SPL

evolves, leading to several different basic and educational variants over time.

Each variant of the SPL needs a database to store information about employees,

and the selection of features impacts the database: While basic variants do not need

to store any education-related records, educational variants do. We visualize the

impact of both features and evolution on the schema in Table 1.1, where feature

variation is captured in the columns and variation over time is captured in the

rows. Each basic schema variant contains only the schema in a cell in column basic

of Table 1.1a while an educational schema variant consists of two sub-schemas: one

from the basic column of Table 1.1a and another from the educational column of

Table 1.1b. The basic sub-schema and the educational sub-schema may vary over

time independently. For example, an extension to the educational sub-schema may

use an older version of the basic schema. This is reflected by the highlighted cells in

Table 1.1, which describes a complete schema for a particular educational variant.

To describe variation over time of each sub-schema, we introduce two disjoint sets

of temporal features (boolean variables, like any other feature), shown in the left

columns of Table 1.1a and Table 1.1b.
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Now, consider the following scenario: In the initial design of the basic database,

the DBA settles on three tables engineerpersonnel , otherpersonnel , and job, shown

in Table 1.1a and associated with feature V1. After some time, they decide to

refactor the schema to remove redundant tables, combining the two relations

engineerpersonnel and otherpersonnel into one, empacct , associated with feature

V2. Since some clients’ software relies on a previous design, the two schemas have

to coexist in parallel. Therefore, the existence (presence) of engineerpersonnel and

otherpersonnel relations is variational, they only exist in the basic schema when

V1 = true. This scenario is an example of component evolution in SPLs, where

developers update, refactor, and improve components of the SPL, including the

database [38].

Now, consider the case where a client that previously requested a basic variant

of the software has added courses to educate its employees in specific subjects.

The SPL developer needs to enable the edu feature for this client, forcing the

adjustment of the schema variant to include the educational sub-schema. This

case describes product evolution, where database evolution in an SPL results from

clients adding/removing features/components [38].

The situation is further complicated, since the basic and educational schemas

are interdependent. Consider the basic schema variant for feature V4. Attributes

std and instr only exist in the empacct relation when edu = true, represented by

a dash-underline, otherwise the empacct relation has only the attributes empno,

hiredate, title, and deptno. Hence, the attributes std and instr in empacct relation

are variational, that is, they only exist in empacct relation when edu = true.
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Our example demonstrates how different kinds of variation interact with each

other, an inevitable consequence of modern software development. The described

interaction is similar to a recent scenario we discussed with an industry contact in

Section 1.1.2.

1.1.2 New Instance of Data Variation in Industry

New variational scenarios could appear, either from combination of other scenarios

or even a new scenario could reveal itself. For example, the following is a scenario

we recently discussed with an industry contact: A software company develops

software for different networking companies and analyzes data from its clients to

advise them accordingly. The company records information from each of its clients’

networks in databases customized to the particular hardware, operating systems,

etc. that each client uses. The company analysts need to query information from all

clients who agreed to share their information, but the same information need will be

represented differently for each client. This problem is essentially a combination of

the SPL variation problem (the company develops and maintains many databases

that vary in structure and content) and the data integration problem (querying

over many databases that vary in structure and content). However, neither the

existing solutions from the SPL community nor database integration address both

sides of the problem. Currently the company manually maintains variant schemas

and queries, but this does not take advantage of sharing and is a major maintenance

challenge. With a database encoding that supports explicit variation in schemas,
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content, and queries, the company could maintain a single variational database that

can be configured for each client, import shared data into a variational database,

and write variational queries over the variational database to analyze the data,

significantly reducing redundancy across clients.

1.2 Contributions and Outline of this Thesis

The high-level goal of this thesis is to emphasize the need for a variation-aware

database framework and to present one such framework. Therefore, in addition to

the formal definition of the framework and query language, it also provides vari-

ational datasets (including both the variational database and a set of queries) to

illustrate the feasibility of the proposed framework. Furthermore, it illustrates var-

ious approaches to implement such a framework and compares their performances.

The rest of this section describes the structure of this thesis, enumerating the

specific contribution that each chapter makes.

Chapter 2 (Background) introduces several concepts and terms that are the

basis of this thesis. It describes types and how to interpret them. It explains

relational databases with assumptions that are held throughout the thesis and

relational algebra. It also describes various ways of incorporating variation into

elements of a database.

Chapter 3 (Variational Database Framework) describes a formal model of vari-

ational databases (VDBs), where the structure of data is defined by a variational

schema (Section 3.1) and the content is defined by variational tables (Section 3.2).
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In essence, a variational database gathers multiple relational databases in one

place. Section 3.1 and Section 3.2 also describe how a relational database can

be generated from a VDB, that is, how a variational database can be deployed

to a relational database for a variant. Finally, Section 3.3 defines properties of a

well-formed VDB.

Chapter 4 (Variational Queries) describes the need for a query language to

extract information from a VDB. It formally defines variational relational algebra

(VRA) as a query language for VDB (Section 4.1). It also describes an explicitly

annotating function for queries to relieve the user from repeating the VDB’s vari-

ation in their queries in Section 4.3. Additionally, it describes a static type system

for ensuring that all variants of a query are compatible with the corresponding

variants of the VDB (Section 4.2). Furthermore, it defines the denotational se-

mantics of VRA through the semantics of relational algebra (Section 4.4). It also

defines a set of syntax-based rules to minimize variation in variational queries

(Section 4.5). Finally, it discusses the properties of the VRA in Section 4.6 in-

cluding its expressiveness and type safety. This chapter heavily borrows from our

papers [10, 11, 12].

Chapter 5 (Variational Database Use Cases) aims at guiding an expert through

generating a VDB and writing variational queries for a variation scenario where

unfortunately, database variants do not exist. Thus, generating the VDB requires

the expert knowledge and cannot be automated. It details two such variation sce-

narios and introduces two use cases of VDB, one over space (adapted from the

email SPL described by Hall [37] and explained in Section 5.1) and another over
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time (adapted from the evolution of an employee schema described by Moon et al.

[56] and explained in Section 5.2). Additionally, it describes how a VDB can store

all database variants in a single database and how variational queries can capture

various information needs over different database variants in a single query. It also

describes how the VDBs were systematically generated and how the variational

queries were adapted and adjusted from papers describing the variation scenario.

The last section of this chapter, Section 5.3, discusses the question “should varia-

tion be encoded explicitly in databases?”.

Chapter 5 heavily borrows from our previous paper [13] and Qiaoran Li’s Mas-

ters project report [51]. Although the databases and queries were originally taken

from Qiaoran’s work, they have been significantly modified so that the VDBs pass

the properties of a well-defined VDB and the queries justify the information need

of their scenario better.

Chapter 6 (Variational Database Management System) discusses how we imple-

mented the variational database framework and the variational relational algebra

into a Variational Database Management System (VDBMS) on top of a traditional

RDBMS. This chapter includes the architecture of VDBMS and approaches used

to generate SQL queries to run variational queries on a backend RDBMS. It also

compares the performance of VDBMS using different SQL generator approaches.

Chapter 7 (Related Work) describes previous research on different kinds of

variation in databases.

Finally, Chapter 8 (Conclusion) briefly summarizes the main contributions of

this thesis and immediate future works.
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Chapter 2 Background

The core of this thesis is injecting a new aspect to relational databases: variation.

Thus, the goals of this chapter are twofold: first, to introduce how variation is

encoded and represented in our variational database framework; second, to provide

the reader with the concepts and notations used to build up the main contributions

of this thesis—mainly relational databases, relational algebra, and approaches used

to add variation to them.

Throughout the thesis, we use types when defining concepts. A type is a set

of possible values. For example, the type Int denotes all possible integers. In our

formalization, we use the notation of i ∈ Int to state that the variable i is of type

Int. Types can be more general. Consider the type Set a that indicates the set of

all sets of values of type a. Here, a is a type variable and stands for any possible

type. Note that concrete types start with a capital letters but type variables do

not. For example, the type Set Int is the type of sets of integers and it has values

such as {1, 3, 4} and { }. We also use type synonyms to make formalizations easier

to understand. For example, instead of referring to Set Int we can give it a new

name (Ints = Set Int). Thus, Ints also indicates all possible sets of integers.

Sometimes we must extend a type with an additional “bottom” element (i.e., ⊥).

To account for this extension at the type level we subscript the type with ⊥. For

example, Int⊥ denotes the extension of type Int with ⊥. Furthermore, sometimes
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we pair two types together. For example, a variable of type (Int,String) can take

the value (3, “three”). Finally, we use function types to provide the type signature

of functions. For example, the type signature id : a → a for function id states

that the function id takes a value of type a and returns a value of type a.

Throughout the thesis, we discuss relational concepts and their variational

counterparts. When it is unclear from context, we use an underline to distinguish

a non-variational entity from its variational counterpart, both at the value level

and the type level, e.g., x is a non-variational entity while x is its variational

counterpart, if it exists.

Section 2.1 describes the database model of relational databases and the specifi-

cation of the structure used to store the data [1]. Section 2.2 describes the relational

algebra, a query language used to query relational databases [1]. Section 2.3 de-

fines our encoding of the variation space used in the variational database framework

and how we describe parts of that space using propositional formulas of boolean

variables [11, 10]. Finally, we introduce the main techniques used to incorporate

variation into our variational database framework. Section 2.4 introduces variation

into sets, which forms the basis of the variational database framework [31, 77, 10]

and Section 2.5 describes the formula choice calculus used to incorporate variation

into relational algebra [41].
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2.1 Relational Databases

In this section, we introduce relational database concepts, which are the basis of

variational databases. Table 2.1 represents an example relational database instance

corresponding to V2, the highlighted cell in Table 1.1a. Intuitively, the data is

represented in tables with rows of uniform structure where each row contains data

about a specific object or sets of object [1]. Each table is associated with a relation

and has a name, for example, the relation job contains rows specifying the salary

of a position in a company. The columns form the structure of the table and are

called attributes, for example, the relation job has two attributes: title and salary .

The values of attributes are taken from a set of constants called the domain. For

simplicity, we do not distinguish between different types of values such as strings,

numbers, and dates.1 Finally, we differentiate between the database schema, which

is the structure data is stored, and the database instance, which is the actual

content of the database. For example, Table 2.1b and Table 2.1c illustrate the

database instance while Table 2.1a shows the database schema. This differentiation

can be viewed as the differentiation of types and values in programming languages.

For example, x is variable of type Int and may have value 15.

We now shift our focus to the formal definitions of a relational database. A

relational database D stores information in a structured manner by forcing data

to conform to a schema S that is a finite set {s1, . . . , sn} of relation schemas. A

1This design decision was made to make proofs easier, however, the implementation of our
database system distinguishes between different kinds of values and considers a unique domain
for each.
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Table 2.1: An example of a relational database corresponding to V2 of our moti-
vating example given in Table 1.1a.

(a) The schema of a relational database.

empacct (empno, name, hiredate, title, deptname)
job (title, salary)

(b) The empacct table.

empacct
empno name hiredate title deptname
10001 Georgi Facello 1986-06-26 Senior Engineer Development
10002 Bezalel Simmel 1985-11-21 Staff Sales
. . . . . . . . . . . . . . .
499998 Patricia Breugel 1993-10-13 Senior Staff Finance
499999 Sachin Tsukuda 1997-11-30 Engineer Production

(c) The job table.

job
title salary
Assistant Engineer 61594
Senior Engineer 96646
. . . . . .
Staff 77935
Technique Leader 58345
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Relational database objects:

a ∈ AttrName Attribute Name
v ∈ AttrDom Attribute Value
r ∈ RelName Relation Name

u ∈ Tuple := (v1, . . . , vl) Tuple
A ∈ Set AttrName := {a1, a2, . . . , al} Ordered Set of Attributes

s ∈ RelSch := r (A) Relation Schema
U ∈ RelCont := {u1, u2, . . . , uk} Relation Content

t ∈ Table := (s, U) Table
S ∈ Sch := {s1, s2, . . . , sn} Schema

I ∈ DBInst := {t1, t2, . . . , tn} Database Instance

Relational database type synonyms:

RelCont = Set Tuple

Table = (RelSch,RelCont)

Sch = Set RelSch

DBInst = Set (RelSch,RelCont)

Figure 2.1: Relational database objects and type synonyms.
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relation schema is defined as s = r (a1, . . . , ak) where each ai ∈ AttrName is an

attribute contained in the relation named r and AttrName is a fixed countably

infinite set of attributes. We assume a total order ≤AttrName on AttrName, and

assume for simplicity that sets of attributes are sorted according to ≤AttrName in

all relations.

Figure 2.1 defines the relational database objects and type synonyms. The con-

tent of database D is stored in the form of tuples. A tuple u is a list of values. We

do not distinguish between different types of values within a relational database.

The order of values within a tuple corresponds to the order of attributes in its

corresponding relation schema, that is, given tuple u = (v1, . . . , vk) in the relation

with relation schema r(a1, . . . , ak), vi corresponds to attribute ai. A relation con-

tent, U , is the set of all tuples {u1, . . . , um} corresponding to a particular relation.

The operation att(i) returns the attribute corresponding to index i in a tuple,

implicitly looking up the attribute in the corresponding relation schema. A table

t = (s, U) is a pair of relation schema and relation content. A database instance,

I, of the database D with schema S, is a set of tables {t1, . . . , tn} for each relation

in S. For brevity, when it is clear from context, we refer to a database instance as

simply a database.

2.2 The SPC Relational Algebra

Having introduced relational databases, we now shift gears into querying these

databases, that is, extracting information from tables. For almost all relational
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query languages, the result of a query is a table called result . We base our vari-

ational query language on the SPC relational algebra. Three primitive operators

form the SPC algebra: selection, projection, and cross-product (or Cartesian prod-

uct) [1]. We introduce these operators through Example 2.2.1 by stating an intent

and then building up a query to extract the information required by the intent.

Example 2.2.1. Consider the database instance given in Table 2.1. We want to

get a list of employees (by their names) whose salary is more than 65000 dollars.

As the first step, we use the selection operator to get the tuples for all jobs with

salaries that are more than 65000 dollars.

q
1

= σsalary≥65000(job)

A sample of the results returned by the query q
1

is given in Table 2.2a. Next a set

of tuples is created by taking the cross-product of q
1

and empacct .

q
2

= q
1
× empacct

A sample of the results returned by the query q
2

is given in Table 2.2b. However,

looking closely at these results, there is no connection between an employee in the

empacct relation and their salary in the job relation. Thus, we have to perform

another selection to connect each employee with their title.

q
3

= σempacct .title=job.title(q
2
)

A sample of the results returned by the query q
3

is given in Table 2.2c. At this

point, we are only interested in two attributes, that is, name and salary . Thus,

we use projection to discard the unneeded columns.

q
4

= πname,salary(q
3
)

A sample of the results returned by the query q
4

is given in Table 2.2d.
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Table 2.2: Results of each step of building the final query in Example 2.2.1.

(a) Result of the query q
1

= σsalary≥65000(job).

result
title salary
Senior Staff 77935
Senior Engineer 96646
. . . . . .
Staff 77935
Engineer 96646

(b) Result of the query q
2

= (σsalary≥65000(job))× empacct .

result
title salary empno name hiredate title deptname
Senior Engineer 96646 13094 Sanjay Servieres 1986-01-01 Engineer Research
Staff 77935 16099 Mohan Ferretti 1987-09-20 Senior Staff Human Resources
. . . . . . . . . . . . . . . . . . . . .
Engineer 80324 19162 Chinho Fadgyas 1986-05-19 Technique Leader Production
Senior Staff 88070 22255 Kristian Merel 1986-09-12 Senior Engineer Development

(c) Result of the query q
3

= σempacct .title=job.title ((σsalary≥65000 (job))× empacct).

result
title salary empno name hiredate title deptname
Engineer 96646 13094 Sanjay Servieres 1986-01-01 Engineer Research
Senior Staff 77935 16099 Mohan Ferretti 1987-09-20 Senior Staff Human Resources
. . . . . . . . . . . . . . . . . . . . .
Senior Engineer 96646 22255 Kristian Merel 1986-09-12 Senior Engineer Development
Staff 77935 43670 JoAnna Randi 1987-10-18 Staff Marketing

(d) Result of the query q
4

= πname,salary (σempacct .title=job.title ((σsalary≥65000 (job))× empacct)).

result
name salary
Sanjay Servieres 96646
Mohan Ferretti 77935
. . . . . .
Kristian Mere 96646
JoAnna Randi 77935

The relational algebra that we use also includes standard set operations, a

join operation, and an empty relation. The syntax is defined in Figure 2.2. The

set operations, union and intersection, require two subqueries to have the same

relation schema and simply applies the corresponding operation, either union or

intersection, to the sets of tuples returned by the subqueries. The join operation is
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Operators:

• := < | ≤ | = | 6= | > | ≥
◦ := ∪ | ∩

Constant:

k ∈ AttrDom

Variational conditions:

θ ∈ Condition := true | false | a • k | a • a | ¬θ | θ ∨ θ

Relational queries:

q ∈ Q := r Relation
| πAq Projection
| σθq Selection
| q × q Cross-Product
| q ◦ q Set Operation
| q onθ q Join
| ε Empty Relation

Figure 2.2: Syntax of relational algebra.

equivalent to selection applied to a cross-product, that is, q
1
./θ q2 = σθ(q1 × q2).

For example, q
3

in Example 2.2.1 can be rewritten as

q
3
′ = (σsalary≥65000 (job)) ./empacct .title=job.title empacct .

Throughout our examples, omitting the condition of join implies it is a natural join,

that is, join on the shared attribute of the two subqueries. For example, q
3
′ can

be rewritten using the natural join

q
3
′′ = (σsalary≥65000 (job)) ./ empacct .

We also extend relational algebra such that projection of an empty set of at-

tributes is a valid query that returns an empty set of tuples. We define the empty
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query ε as shorthand for projecting an empty set of attributes, that is, ε = π{}q.

Note that we do not extend the notation of using underline for relational algebra

operators. Instead, relational algebra operators are overloaded and are used as

both plain relational and variational operators. It should be clear from context

when an operation is variational or not.

Although we do not consider renaming of queries in the formal definition of

relational algebra, we do support this in our implementation. Furthermore, we use

it to rename subqueries of our examples to make them easier to understand. For

example, query q
3
′′ can be written as:

q
3

′′ = temp ./ empacct

temp← σsalary≥65000 (job)

Making this renaming explicit is necessary to avoid names conflicting in some cases.

2.3 Variation Space and Encoding

In this section, we describe how we represent variation throughout this thesis.

We encode variation in terms of features. The feature space, FeatName, of a

variational database is a closed set of boolean variables called features. A feature

f ∈ FeatName can be enabled (i.e., f= true) or disabled (f= false). Features

describe the variation in a given variational scenario. For example, in the context

of schema evolution, features can be generated from version numbers (e.g., features
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Feature expression syntax:

f ∈ FeatName Feature Name
F ∈ Set FeatName Closed Set of Features

b ∈ Bool := true | false Boolean Value
e ∈ FeatExpr := b | f | ¬e | e ∧ e | e ∨ e Feature Expression

c ∈ Config : FeatName → Bool Configuration

Evaluation of feature expressions:

EJ.K : FeatExpr → Config → Bool

EJbKc = b

EJfKc = c f

EJ¬eKc =

{
false, if EJeKc = true

true, otherwise

EJe1 ∧ e2Kc =

{
true, if EJe1Kc = true and EJe2Kc = true

false, otherwise

EJe1 ∨ e2Kc =

{
true, if EJe1Kc = true or EJe2Kc = true

false, otherwise

Relations over feature expressions:

e1 ≡ e2 iff ∀c ∈ Config.EJe1Kc = EJe2Kc
sat(e) iff ∃c ∈ Config.EJeKc = true

unsat(e) iff ∀c ∈ Config.EJeKc = false

oneof (f1, f2, . . . , fn) = (f1 ∧ ¬f2 ∧ . . . ∧ ¬fn) ∨ (¬f1 ∧ f2 ∧ . . . ∧ ¬fn)

∨ (¬f1 ∧ ¬f2 ∧ . . . ∧ fn)

Figure 2.3: Feature expression syntax, relations, and evaluation.
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V1 to V5 and T1 to T5 in the motivating example, Table 1.1); for SPLs, the features

can be adopted from the SPL feature set (e.g., the edu feature in our motivating

example, Table 1.1); and for data integration, the features may represent different

data sources. Note that it is easy to extend features to multi-valued variables that

have a finite set of countable values. Consider our motivating example, Table 1.1.

We could choose to have a feature V as a multi-valued variable which takes one

of the values in set {1, 2, . . . , 32}. This new multi-valued feature V is equivalent

to having five boolean variables V1, V2, V3, V4, and V5 since it represents all 32

possible combinations of V1–V5. The feature space is captured by a closed set of

features F .

Features are used at variation points to indicate which variants a particular

element belongs to. Thus, enabling or disabling each of the features in the feature

set produces a particular database variant where all variation has been removed.

A configuration is a total function that maps every feature in the feature set to a

boolean value and is denoted by c ∈ Config : FeatName → Bool. We represent

a configuration by the set of enabled features. For example, in our motivating

scenario, the configuration {V2, T3, edu} represents a database variant where only

features V2, T3, and edu are enabled (and the rest are disabled). This database

variant contains relation schemas in the yellow cells of Table 1.1. We refer to a

variant by the configuration that produces it. For example, variant {V2, T3, edu}

refers to the variant produced by applying that configuration.

When describing variation points in the database, we need to refer to subsets of

the configuration space. We do this with propositional formulas of features. Thus,
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such a propositional formula defines a condition that holds for a subset of config-

urations and their corresponding variants. For example, the propositional formula

¬edu represents all variants of our motivating example where the edu feature is

disabled, that is, variant schemas of Table 1.1b. We call a propositional formula

of features a feature expression and define it formally in Figure 2.3. Additionally,

in Figure 2.3, we formally define the evaluation function of feature expressions

EJeKc : FeatExpr → Config → Bool. This function simply substitutes each

feature f in the expression e with the boolean value given by configuration c

and then simplifies the propositional formula to a boolean value. For example,

EJf1 ∨ f2K{f1} = true∨ false = true, while EJf1 ∨ f2K{} = false∨ false = false.

Furthermore, in Figure 2.3, we define a binary equivalence relation (≡) on feature

expressions corresponding to logical equivalence and unary sat and unsat pred-

icates that determine whether a feature expression is satisfiable or unsatisfiable,

respectively. We also define the n-ary operation oneof for mutually exclusive fea-

tures. For example, oneof (V1, V2, V3, V4, V5) indicates that only one of the features

V1–V5 can be enabled at a time.

No matter the context, features often have a relationship with each other that

constrains the set of possible configurations. For example, in our motivating ex-

ample (Section 1.1) only one of the temporal features of V1–V5 can be true for a

given variant. This relationship is captured by a feature expression, called a fea-

ture model, which restricts the set of valid configurations. That is, a configuration

c is only valid if the evaluation of feature model e under configuration c is true,

that is EJeKc = true. For example, the restriction that at a given time only one
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of temporal features V1–V5 can be enabled is represented by the feature model

oneof (V1, V2, V3, V4, V5).

2.4 Annotations and Variational Sets

We now introduce the first approach used to incorporate variation into a database.

To incorporate feature expressions into the database, we annotate database ele-

ments (including attributes, relations, and tuples) with feature expressions. An

annotated element x with feature expression e is denoted by xe, that is, if x

has type a (i.e., x ∈ a) then xe has the corresponding variational type Var a

(i.e., xe ∈ Var a). The feature expression attached to an element is called its

presence condition since it determines the condition (set of configurations) under

which the element is present in the database. This is done by the configura-

tion function xJ.K : Var a → Config → a⊥ defined in Figure 2.4. For ex-

ample, assuming F = {f1, f2}, the annotated number 2f1∨f2 is present in vari-

ants {f1} (i.e., xJ2f1∨f2K{f1} = 2), {f2} (i.e., xJ2f1∨f2K{f1} = 2), and {f1, f2}

(i.e.,xJ2f1∨f2K{f1,f2} = 2) but not in variant {} (i.e., xJ2f1∨f2K{} = ⊥). The op-

eration pc(xe) = e returns the presence condition of an annotated element.

A variational set (v-set) X = {x1e1 , . . . , xnen} is a set of annotated elements,

that is, X ∈ Set (Var a) [31, 77, 10]. We typically omit the presence condition

true in a variational set, e.g., 4true = 4. Conceptually, a variational set represents

many different plain sets simultaneously. These plain sets can be generated by

configuring a variational set with a configuration. This is done by the variational
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Configuration of an annotated element:

xJ.K : Var a → Config → a⊥

xJxeKc =

{
x, if EJeKc = true

⊥, otherwise

Configuration of (annotated) variational sets:

XJ.K : Set (Var a) → Config → Set a

XJ{x1e1 , x2e2 , . . . , xnen}Kc = ⊗{xJx1e1Kc,xJx2e2Kc, . . . ,xJxnenKc}
XJ{ }Kc = { }

XJ.K : Var (Set (Var a)) → Config → Set a

XJXeKc = XJ↓(Xe)Kc
XJ{ }trueKc = { }

XJ{ }falseKc = { }

Dropping bots from a plain set:

⊗{x1, x2, . . . , xn} = {xi | xi 6= ⊥}

Normalization of (annotated) variational sets:

↓({x1e1 , x2e2 , . . . , xnen}) = {xeii | 1 ≤ i ≤ n, sat(ei)}
↓(Xe) = {xiei∧e | xeii ∈ Xe, sat(ei ∧ e)}

Operations over (annotated) variational sets:

X1 ∪X2 = {xe1 | xe1 ∈↓(X1) ,∃e2.xe2 6∈↓(X2)}
∪ {xe2 | xe2 ∈↓(X2) ,∃e1.xe1 6∈↓(X1)} ∪ {xe1∨e2 | xe1 ∈↓(X1) , x

e2 ∈↓(X2)}
X1 ∩X2 = {xe1∧e2 | xe1 ∈ X1, x

e2 ∈ X2, sat(e1 ∧ e2)}
X1 ×X2 = {(x1, x2)e1∧e2 | xe11 ∈ X1, x

e2
2 ∈ X2}

X1 ≡ X2 iff ∀xe ∈ (↓(X1)∪ ↓(X2)), x
e1 ∈↓(X1) , x

e2 ∈↓(X2) .e1 ≡ e2, e ≡ e1

Figure 2.4: Configuration of variational set and annotated variational set, nor-
malization of variational sets and annotated variational sets, and operations over
variational sets. The operations on variational sets are overloaded, that is, the
left-hand side ∪ denotes the union of variational sets while the right-hand side one
denotes the union of plain sets.
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set configuration function XJXKc : Set (Var a) → Config → Set a, defined in

Figure 2.4. The configuration function evaluates the presence condition ei of each

element xi of the variational set with the configuration c. If the evaluation results

in true, it includes xi in the plain set, and otherwise it does not. Example 2.4.1

illustrates the configuration of a variational set for all possible configurations.

Example 2.4.1. Assume we have the feature space F = {f1, f2} and the varia-

tional set X1 = {2f1 , 3f2 , 4}. X1 represents four plain sets:

XJX1Kc =



{2, 3, 4}, c = {f1, f2}

{2, 4}, c = {f1}

{3, 4}, c = {f2}

{4}, c = {}

This states that, for example, configuring X1 for the variant that enables bot f1 and

f2 (that is, f1 = true, f2 = true) results in the plain set XJX1K{f1,f2} = {2, 3, 4}.

Following database notational conventions, we drop the brackets of a variational

set when used in database schema definitions and queries.

A variational set itself can also be annotated with a feature expression. Xe =

{x1e1 , . . . , xnen}e is an annotated variational set, that is, Xe ∈ Var (Set (Var a)).

Annotating a variational set with the feature expression e means that all elements

in the variational set are only present when e evaluates to true. The normal-

ization operation ↓ (Xe) applies this restriction by pushing it into the presence

conditions of the individual elements: ↓ (Xe) = {xiei∧e | xeii ∈ Xe, sat(ei ∧ e)}.
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Note that both the normalization operation and variational set configuration are

overloaded, that is, they are defined for both variational sets and annotated vari-

ational sets. Also, note that the normalization operation also removes elements

with unsatisfiable presence conditions and may also be applied to an unannotated

variational set X since Xtrue = X. For example, the annotated variational set

X1 = {2f1 , 3¬f2 , 4, 5f3}f1∧f2 indicates that all the elements of the set can only exist

when both f1 and f2 are enabled. Thus, normalizing the variational set X1 re-

sults in {2f1∧f2 , 4f1∧f2 , 5f1∧f2∧f3}. The element 3 is dropped since ¬sat(pc(3, X1)),

where pc(3, X1) = ¬f2 ∧ (f1 ∧ f2). Note that we use the function pc(x,Xe) to

return the presence condition of a unique variational element within a bigger vari-

ational structure. Note that, without loss of generality, we assume that elements

in a variational set are unique since we can simply disjunct the presence conditions

of a repeated element, that is, {xe, xe, xe11 , . . . , xenn } = {xe∨e′ , xe11 , . . . , xenn }.

In Figure 2.4, we also define several operations, such as union and intersection,

over variational sets; these operations are used in Section 4.2. The semantics

of a variational set operation is equivalent to applying the corresponding plain

set operation to every corresponding variant of the argument variational sets. For

example, the union of two variational sets X1∪X2 should produce a new variational

set X3 such that ∀c ∈ Config. XJX3Kc = XJX1Kc ∪XJX2Kc, where ∪ is the plain

set union operation. This property must hold for all operations over variational

sets, that is, for all possible operations, �, defined on variational sets the property

(P1) : ∀c ∈ Config.XJ↓ (X1)� ↓ (X2)Kc = XJX1Kc�XJX2Kc must hold, where � is
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the counterpart operation on plain sets.2

2.5 The Formula Choice Calculus

The second approach we use to incorporate variation into queries is the formula

choice calculus [41] which is an extension of the choice calculus [75, 29]. The choice

calculus is a metalanguage for describing variation in programs and its elements

such as data structures [77, 31]. In the choice calculus, variation is represented in-

place as choices between alternative subexpressions. For example, the variational

expression expr = f1〈1, 2〉+ f2〈3, 4〉+ f1〈5, 6〉 contains three choices. Each choice

has an associated dimension, which is a boolean variable equivalent to a feature

and is used to synchronize the choice with other choices in different parts of the

expression. For example, expression expr contains two dimensions, f1 and f2,

and the two choices in dimension f1 are synchronized. Therefore, the variational

expression expr represents four different plain expressions, depending on whether

the left or right alternatives are selected from each dimension. Assuming that

dimensions may be set to boolean values where true indicates the left alternative

2This property is proved for the operations we define over variational sets in Coq proof assis-
tant [48].
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and false indicates the right alternative, we have:

f1〈1, 2〉+ f2〈3, 4〉+ f1〈5, 6〉 =



1 + 3 + 5, f1 = true, f2 = true

1 + 4 + 5, f1 = true, f2 = false

2 + 3 + 6, f1 = false, f2 = true

2 + 4 + 6, f1 = false, f2 = false

The formula choice calculus extends the choice calculus by allowing dimensions to

be propositional formulas [41]. For example, the variational expression expr ′ =

f1 ∨ f2〈1, 2〉+ f2〈3, 4〉+ f1〈5, 6〉 represents four plain expressions:

f1 ∨ f2〈1, 2〉+ f2〈3, 4〉+ f1〈5, 6〉 =



1 + 3 + 5, f1 = true, f2 = true

1 + 4 + 5, f1 = true, f2 = false

1 + 3 + 6, f1 = false, f2 = true

2 + 4 + 6, f1 = false, f2 = false
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Chapter 3 Variational Database Framework

In this chapter, we introduce the variational database framework and how it en-

codes variation directly in relational databases resulting in a variational database

(VDB). To incorporate variation within a database, we annotate elements with

feature expressions, as introduced in Section 2.4. We use annotated elements both

in the schema and content. Within a schema we allow attributes and relations to

exist conditionally based on the feature expression assigned to them (Section 3.1).

At the content level, we annotate each tuple with a feature expression, indicating

when the tuple is present (Section 3.2).

3.1 Variational Schema

In this section, we define how variation is encoded at the schema level. We first

present an example that illustrates how relational databases fail to encode variation

at the schema level and how we can express variation in their schemas. Recall from

Section 2.1 that the schema of a database is essentially its type. This is also the case

for variational databases, except that the components of the schema are variational.

The variation in a variational schema states the condition under which its relations

and attributes exist. For example, consider the empbio relation schema associated

with variant V3 of our motivating example shown in Table 1.1a. Table 3.1a shows



32

a corresponding relational table of this relation. Note that the relation empbio

changes in variants that enable either V4 or V5 and Table 3.1b and Table 3.1c show

their corresponding relational tables, respectively. The variational relation schema

of empbio captures this variation in Table 3.1d by annotating the relation and each

of its attributes with a feature expression indicating which configurations they exist

in. The feature expressions written in blue above the attributes and the relation

name are their presence conditions. For example, the feature expression V3∨V4∨V5

indicates that the empbio table is present for variants that enable one of V3–V5.

The three attributes empno, sex , and birthdate are present in all variants where the

empbio relation exists, so their presence conditions are true. However, the name

attribute is only present in variants that enable V4 while attributes firstname and

lastname are only present in variants that enable V5.

Furthermore, the existence of the variational relation empbio and its attributes

relies on the existence of the entire variational database which is captured by the

feature model of the database. Remember that the feature model is the presence

condition of the variational database as a whole. The hierarchy of presence con-

dition sometimes simplifies the presence conditions. For example, assuming that

only one of the V3–V5 can be enabled for a variant at a time, the empbio varia-

tional table shown in Table 3.1d can be simplified to the variational table shown in

Table 3.2. Note that Table 3.2 and Table 3.1d focuse only on the relation schema

and does not include the variation at the content level.1 We discuss the encoding

of variation at the content level in Section 3.2.

1Table 3.4 includes the variation at the content level.
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Table 3.1: The relational tables of empbio for variants that enable one of the
features V3, V4, or V5 and the variational relation empbio that encompasses the
three variants of the plain table empbio without accounting for variation at the
content level. Note that data from earlier variants like {V3} is propagated to the
later variants like {V4} and {V5}.

(a) The relational table of empbio for variants that only enables the feature V3 out of
the features V1–V5. The relation schema is captured by the name of the relation and its
attributes.

empbio
empno sex birthdate
12001 F 1960-11-06
12002 M 1961-04-15
12003 M 1958-07-27
. . . . . . . . .

(b) The relational table of empbio for variants that only enables the feature V4 out of
the features V1–V5.

empbio
empno sex birthdate name
12001 F 1960-11-06 Ulf Hofstetter
12002 M 1961-04-15 Luise McFarlan
12003 M 1958-07-27 Shir DuCasse
80001 M 1956-09-30 Nagui Merli
80002 M 1963-04-25 Mayuko Meszaros
80003 F 1960-10-26 Theirry Viele
. . . . . . . . . . . .

(c) The relational table of empbio for variants that only enables the feature V5 out of
the features V1–V5.

empbio
empno sex birthdate firstname lastname
12001 F 1960-11-06 Ulf Hofstetter
12002 M 1961-04-15 Luise McFarlan
12003 M 1958-07-27 Shir DuCasse
80001 M 1956-09-30 Nagui Merli
80002 M 1963-04-25 Mayuko Meszaros
80003 F 1960-10-26 Theirry Viele
200001 M 1960-01-11 Selwyn Koshiba
200002 M 1957-09-10 Bedrich Markovitch
200003 F 1961-02-07 Pascal Benzmuller
. . . . . . . . . . . . . . .

(d) The variational relation of empbio without accounting for variation at the content
level. The relation schema is captured by the name of the relation and attributes in
addition to their presence conditions which are colored blue.

V3 ∨ V4 ∨ V5 true true true V4 ∧ ¬V3 ∧ ¬V5 V5 ∧ ¬V3 ∧ ¬V4 V5 ∧ ¬V3 ∧ ¬V4

empbio
empno sex birthdate name firstname lastname
12001 F 1960-11-06 Ulf Hofstetter Ulf Hofstetter
12002 M 1961-04-15 Luise McFarlan Luise McFarlan
12003 M 1958-07-27 Shir DuCasse Shir DuCasse
80001 M 1956-09-30 Nagui Merli Nagui Merli
80002 M 1963-04-25 Mayuko Meszaros Mayuko Meszaros
80003 F 1960-10-26 Theirry Viele Theirry Viele
200001 M 1960-01-11 Selwyn Koshiba Selwyn Koshiba
200002 M 1957-09-10 Bedrich Markovitch Bedrich Markovitch
200003 F 1961-02-07 Pascal Benzmuller Pascal Benzmuller
. . . . . . . . . . . . . . . . . .
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Table 3.2: The variational relation empbio without accounting for variation at the
content level. This table is present under a presence condition emot that applies
to the entire database of our motivating example. Example 3.1.2 provides the
variational schema of our motivating example and explains emot .

V3 ∨ V4 ∨ V5 true true true V4 V5 V5

empbio
empno sex birthdate name firstname lastname
12001 F 1960-11-06 Ulf Hofstetter Ulf Hofstetter
12002 M 1961-04-15 Luise McFarlan Luise McFarlan
12003 M 1958-07-27 Shir DuCasse Shir DuCasse
80001 M 1956-09-30 Nagui Merli Nagui Merli
80002 M 1963-04-25 Mayuko Meszaros Mayuko Meszaros
80003 F 1960-10-26 Theirry Viele Theirry Viele
200001 M 1960-01-11 Selwyn Koshiba Selwyn Koshiba
200002 M 1957-09-10 Bedrich Markovitch Bedrich Markovitch
200003 F 1961-02-07 Pascal Benzmuller Pascal Benzmuller
. . . . . . . . . . . . . . . . . .

Figure 3.1 gives a formal definition of variational schemas. Variational schemas

build on plain relational schemas defined in Section 2.1. A variational schema cap-

tures variation in the structure of a database by indicating which attributes and

relations are included or excluded in which variants. To this end, we annotate

attributes, relations, and the schema itself with feature expressions, which de-

scribe the conditions under which each is present. A variational relation schema

(v-relation schema), s, is a relation name with an annotated variational set of

attributes, s ∈ RelSch := r (A)e. The presence condition of the variational re-

lation schema, e, determines in what variants of the database the relation itself

is present. A variational schema (v-schema) is an annotated set of variational

relation schemas, S ∈ Sch := {s1, . . . , sn}e. The presence condition of the en-

tire variational schema, e, is the VDB’s feature model, which provides a top-level

constraint on the set of valid configurations, as described in Section 2.3, and can

be extracted by pc(S). Hence, the variational schema defines all valid schema
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variants of a VDB. Example 3.1.1 defines a variational schema for only a part of

our motivating example introduced in Section 1.1, and Example 3.1.2 provides the

variational schema of our motivating example in its entirety.

Example 3.1.1. S1 is the variational schema of a VDB that only includes relations

empacct and ecourse in the last two rows of both Table 1.1a and Table 1.1b. It has

the feature space F = {V4, V5, edu, T4, T5}. Note that attributes that exist condi-

tionally are annotated with a feature expression to account for such a condition,

e.g., the salary attribute only exists when V5 = true.

S1 = {empacct(empno, hiredate, title, deptno, salaryV5 , std edu , instr edu)V4∨V5

, ecourse(courseno, coursename, deptnoT5)T4∨T5}e1

e1 = (¬edu ∧ oneof (V4, V5) ∧ ¬ (T4 ∨ T5)) ∨ (edu ∧ oneof (V4, V5) ∧ oneof (T4, T5))

where e1 allows only one temporal feature for the basic schema to be enabled at a

time, and either one temporal feature for the education extension, if edu is enabled,

or else no temporal feature for the education extension.

The presence of an attribute follows the hierarchal layout of information in a

database: an attribute’s presence depends on the presence of its parent variational

relation, which in turn depends on the presence of the variational schema. Thus,

the complete presence condition of the attribute aea in variational relation r(. . .)er

defined in variational schema S is pc(a, S) = ea ∧ er ∧ pc(S).

Similarly, the presence condition of variational relation r is pc(r, S) = er∧pc(S).

For example, in Example 3.1.1 we have pc(empacct , S1) = (V4 ∨ V5) ∧ e1. Further-
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Variational schema objects:

a ∈ AttrName Attribute Name
r ∈ RelName Relation Name

A ∈ Set (Var AttrName) := {ae11 , ae22 , . . . , a
ek
k } Variational Set of Attributes

s ∈ RelSch := r (A)e Variational Relation Schema
S ∈ Sch := {s1, . . . , sn}e Variational Schema

Variational schema type synonyms:

Sch = Var (Set RelSch)

Presence condition of attributes and relations:

pc(a, S) = pc(a, r(. . . , aea , . . .)er) ∧ pc(r, S) = pc(aea) ∧ pc(r, S) = ea ∧ er ∧ pc(S)

pc(r, S) = pc(r(A)er) ∧ pc(S) = er ∧ pc(S)

Variational set of attributes configuration:

AJ.K : Set (Var AttrName) → Config → AttrName

AJAKc = XJAKc

Variational relation schema configuration:

RJ.K : RelSch → Config → RelSch⊥

RJr (A)eAKc =

{
r (AJ↓(AeA)Kc) , if EJeAKc = true

⊥, otherwise

Variational schema configuration:

SJ.K : Sch → Config → Sch

SJ{r1 (A1)
e1 , . . . , rn (An)en}eKc

=

{
{RJr1(A1)

e1∧eKc, . . . ,RJrn(An)en∧eKc}, if EJeKc = true

{}, otherwise

Figure 3.1: Variational schema definition, presence condition of attributes and
relations, and variational schema configuration.
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more, a database element is only present in variants for which its presence condi-

tion satisfiable, e.g., in Example 3.1.1 the std attribute is present in the variant

{edu, V4, T5}, since EJpc(std , S1)K{edu,V4,T5} = EJedu ∧ (V4 ∨ V5) ∧ e1K{edu,V4,T5} =

true∧ (true∨ false)∧ ((¬true∧ oneof (true, false)∧¬(false∨ true))∨ (true∧

oneof (true, false) ∧ oneof (false, true))) = true, but it is not present in the

variant {V4, T5}, since in this variant edu= false, thus, EJpc(std , S1)K{edu,V4,T5} =

false.

Intuitively and similar to variational sets, a variational schema is a system-

atic compact representation of a set of plain schemas called variants. A schema

variant can be obtained by configuring the variational schema with that variant’s

configuration. We define the configuration function for variational schemas and

its elements in Figure 3.1. Example 3.1.2 illustrates configuring the variational

schema of our motivating example for the variant {edu, V2, T3}.

Example 3.1.2. Table 3.3 illustrates the variational schema of the motivating

example, denoted by Smot . As a reminder the motivating example has the fea-

ture space F = {edu, V1, V2, V3, V4, V5, T1, T2, T3, T4, T5}. Additionally, all schema

variants are illustrated inTable 1.1.

The feature model emot only allows one temporal feature to be true from a set

of temporal features at the time.

emot = (¬edu ∧ oneof (V1, V2, V3, V4, V5) ∧ ¬ (T1 ∨ T2 ∨ T3 ∨ T4 ∨ T5))

∨ (edu ∧ oneof (T1, T2, T3, T4, T5) ∧ oneof (V1, V2, V3, V4, V5))
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Table 3.3: Variational schema Smot with feature model emot . This variational
schema encompasses 30 relational schemas: five schemas when edu = false and
25 schemas otherwise.

engineerpersonnel(empno,name, hiredate, title, deptname)V1

otherpersonnel(empno,name, hiredate, title, deptname)V1

empacct(empno,nameV2∨V3 , hiredate, title, deptnameV2 , deptnoV3∨V4∨V5 , salaryV5 ,

stdedu∧(V4∨V5), instredu∧(V4∨V5))V2∨V3∨V4∨V5

job (title, salary)V1∨V2∨V3∨V4

dept
(
deptname, deptno,managerno, stdnumedu∧V5 , instrnumedu∧V5

)V3∨V4∨V5

empbio
(
empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5

)V3∨V4∨V5

course
(
courseno¬T1 , coursename, teachernoT1∨T2 , timeT4∨T5 , classT4∨T5 , deptnoT5

)edu

student
(
studentno, coursenameT1 , courseno¬T1 , gradeT3∨T4

)edu∧¬T5

teach (teacherno, courseno)edu∧(T3∨T4∨T5)

ecourse
(
courseno, coursename, deptnoT5

)edu∧(T4∨T5)

take (studentno, courseno, grade)edu∧T5

However, the feature model can be encoded differently. For example, e′mot restricts

it such that it only allows the two sets of temporal features to change together.

e′mot = oneof ((V1 ∨ (V1 ∧ edu ∧ T1)) , (V2 ∨ (V2 ∧ edu ∧ T2)) , (V3 ∨ (V3 ∧ edu ∧ T3))

, (V4 ∨ (V4 ∧ edu ∧ T4)) , (V5 ∨ (V5 ∧ edu ∧ T5)))

Hence, the feature model of a VDB can vary based on the relationship between

features and the restrictions that they must follow. Additionally, the encoding of

presence conditions can change, since different feature expressions can indicate the

same set of variants. For example, the presence condition of the job relation can

be changed to ¬V5.
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Configuring the variational schema Smot for the variant that only enables fea-

tures edu, V2, and T3 (i.e., the variant {edu, V2, T3}) results in relations contained

in the two yellow highlighted cells of tables in Table 1.1.

3.2 Variational Table

Thus far, we illustrated how variation can be incorporated into the schema of a

database. However, it does not suffice to only have variation at the schema level.

Consider the variants of the relation empbio shown in Table 3.1a–Table 3.1c. Ta-

ble 3.2 illustrates the variational relation empbio, but it does not include variation

at the content level. To incorporate variation in the content of a variational rela-

tion we extend each relation with a new attribute prescond that stores the presence

condition of tuples, as shown in Table 3.4. Thus, the value of this attribute for

a tuple determines the set of variants that the tuple belongs to. For example,

the first tuple in the Table 3.4 is present for all database variants that enable the

feature V3. Note that the white spaces in Table 3.4 indicate the non-existing val-

ues for an attribute in a tuple. For example, consider the first three tuples of the

variational table empbio shown in Table 3.4. Since none of the attributes name,

firstname, and lastname exists for variants that enable V3 they are left empty for

tuples of variants that enable V3.

To account for content variability in the formal definition we tag tuples with

presence conditions. Thus, a variational tuple (v-tuple) is an annotated tuple, u ∈

Tuple := (v1, . . . , vl)
e. A variational tuple corresponds to a variational relation,
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Table 3.4: The variational table of empbio encompassing the three variants of the
plain relation empbio shown in Table 3.1a–Table 3.1c. This table accounts for both
variation at the schema and content levels. Note that feature model emot of the
entire VDB applies to it.

V3 ∨ V4 ∨ V5 true true true V4 V5 V5 true

empbio
empno sex birthdate name firstname lastname prescond
12001 F 1960-11-06 Ulf Hofstetter Ulf Hofstetter V3 ∨ V4 ∨ V5

12002 M 1961-04-15 Luise McFarlan Luise McFarlan V3 ∨ V4 ∨ V5

12003 M 1958-07-27 Shir DuCasse Shir DuCasse V3 ∨ V4 ∨ V5

80001 M 1956-09-30 Nagui Merli Nagui Merli V4 ∨ V5

80002 M 1963-04-25 Mayuko Meszaros Mayuko Meszaros V4 ∨ V5

80003 F 1960-10-26 Theirry Viele Theirry Viele V4 ∨ V5

200001 M 1960-01-11 Selwyn Koshiba Selwyn Koshiba V5

200002 M 1957-09-10 Bedrich Markovitch Bedrich Markovitch V5

200003 F 1961-02-07 Pascal Benzmuller Pascal Benzmuller V5

. . . . . . . . . . . . . . . . . . . . .

r(a1, . . . , al)
er , where each element vi is a value corresponding to attribute ai (recall

that attributes in a variational relation are ordered). For example, (38, PL, 678)T5

is a variational tuple that belongs to the ecourse relation from Example 3.1.1 and

is only present when T5 is enabled. The content of a variational relation is a set of

variational tuples, U ∈ RelCont := {u1, . . . , uk} and a variational table (v-table)

is the pair of its relation schema and content, t = (s, U). A variational database

instance is a set of variational tables, I ∈ DBInst := {t1, . . . , tn}e. Figure 3.2

provides the formal definition of a VDB and its type synonyms. A VDB instance

is well-formed if its encoded variation at the schema and content level are consistent

and satisfiable [13]. Section 3.3 expands on this.

Similar to a variational schema, a user can configure a variational table or a

VDB for a specific variant, formally defined in Figure 3.2. This allows users to

deploy a VDB for a specific configuration and generate the corresponding VDB

variant. For example, configuring the variational table empbio, shown in Table 3.4,
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Variational database objects:

u ∈ Var Tuple := (v1, . . . , vl)
e Variational Tuple

U ∈ RelCont := {u1, . . . , uk} Variational Relation Content
t ∈ Table := (s, U) Variational Table

I ∈ DBInst := {t1, . . . , tn}e Variational Database Instance

Variational database type synonyms:

RelCont = Set (Var Tuple)

Table = (RelSch,RelCont)

DBInst = Var (Set ((RelSch,RelCont)))

Variational tuple configuration:

UJ.K : Var Tuple → RelSch → Config → Tuple⊥

UJ(v1, . . . , vl)
eK(s,c)

=

{
(vi, · · · , vj), if ∀k.1 ≤ i ≤ k ≤ j ≤ l,EJpc(att(k), s) ∧ eKc = true

⊥, otherwise

Variational relation content configuration:

TJ.K : RelCont → RelSch → Config → RelCont

TJ{u1, . . . , uk}K(s,c) = {UJu1K(s,c), . . . ,UJukK(s,c)}

VDB instance configuration:

IJ.K : DBInst → Config → DBInst

IJ{t1, . . . , tn}eKc = IJ{(s1, U1) , . . . , (sn, Un)}eKc

=

{
{
(
RJr1(A1)

e1∧eKc,TJ↓
(
U e1∧e
1

)
K(s1,c)

)
, . . .}, if EJeKc = true

{}, otherwise

Figure 3.2: VDB instance syntax and configuration. Note that the schema of a
relation must be passed to the configuration function for its content, however, the
variational schema does not need to be passed to configuration functions of smaller
parts of the variational schema such as RJ.Kc or AJ.Kc since all needed information
for configuring a part of a variational schema is propagated.
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for configuration {V3, edu, T1} results in the relational table empbio in Table 3.1a,

assuming the VDB has the variational schema Smot given in Example 3.1.2. Addi-

tionally, our VDB framework puts all variants of a database into one VDB and it

keep tracks of which variant a tuple belongs to by annotating them with presence

conditions. For example, consider tuples (38, PL, 678)T5 and (23, DB, NULL)T4 that

belong to the ecourse table. The presence conditions T5 and T4 state that tuples

belong to temporal variants four and five of this VDB, respectively. Hence, this

framework tracks which variants a tuple belongs to.

Our VDB framework encodes variation at two levels: schema and content. In

a variational database, while content-level variation can stand on its own, such

as frameworks used for database versioning and experimental databases [40], the

schema level cannot. For example, ecourse
(
courseno, coursename, deptnoT5

)edu∧(T4∨T5)

encodes variation at the schema level for relation ecourse. Dropping the presence

conditions of tuples leads to ambiguity, i.e., it is unclear which variant each of the

tuples (38, PL, 678) and (23, DB, NULL) belongs to. We can only guess that they

belong to variants where T4 or T5 are enabled, but we do not know for sure which

one.

Note that we limit the granularity of variation in content to tuples, that

is, the individual values within a tuple are not variational. This design deci-

sion causes some redundancy. For example, the two tuples (38, PL, 678)T5 and

(38, PL, NULL)¬T5 cannot be represented as a single tuple with variation in the

third element. However, this design decision does not prevent us from distinguish-

ing between a NULL value that represents a missing value and a NULL value that
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represents a cell that is not present. This distinction can be made by checking the

satisfiability of the presence condition of the value vi in tuple u with of relation

r in schema S: If sat(pc(att(i), S) ∧ pc(u, r) ∧ pc(r, S)), then the NULL indicates a

missing value, and otherwise it indicates a non-present cell.

3.3 Properties of a Variational Database Framework

In this section, we describe a set of basic properties that a well-formed VDB should

satisfy. These checks ensure that presence conditions are consistent and satisfiable,

which ensures that each element is present in at least one variant. In the following,

sat(e) denotes a satisfiability check that returns true if the feature expression e is

satisfiable and false otherwise.

A well-formed v-schema should have the following properties:

1. There is at least one valid configuration of the VDB feature model pc(S):

sat(pc(S))

2. Every relation r is present in at least one configuration of the variational

schema S:

∀r ∈ S.sat(pc(r, S))

3. Every attribute a in every relation r is present in at least one configuration

of the variational schema S:

∀a ∈ r,∀r ∈ S.sat(pc(r, S) ∧ pc(a, r))

4. If Sc denotes the expected plain relational schema for configuration c of the
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variational schema S, then configuring the variational schema with that con-

figuration, written JSKc, actually yields that variant:

∀c ∈ Config.SJSKc = Sc

At the data level, a well-formed VDB should have these properties:

1. Every tuple u in relation r is present in at least one variant:

∀u ∈ r,∀r ∈ S.sat(pc(r, S) ∧ pc(u, r))

2. For every tuple u in relation r, if an attribute a in r is not present in any

variants of the tuple, then the value of that attribute in the tuple, written

valueu(a), should be NULL:

∀u ∈ r,∀a ∈ r,∀r ∈ S.¬sat(pc(r, S) ∧ pc(a, r) ∧ pc(u, r)) ⇒ valueu(a) =

NULL

Since a single VDB can supply data for many different database variants at the

same time, encoding variation explicitly in a database allows the developers to

check for different properties over all database variants. Thus, depending on the

context of the VDB, more specialized properties can be checked. For example,

if temporal variability in a database is accumulated over variants (i.e. old data is

included in more recent variants in addition to newly added data), it is desirable to

ensure that older variants are subsets of newer variants. This property should hold

for our employee dataset, introduced in Section 5.2. To check this, assume that

configurations c1, c2, · · · represent time-ordered configurations, then check ∀ci, cj ∈

Config, i ≤ j, IJIKci ⊆ IJIKcj , where IJIKc denotes configuring the VDB instance

I for configuration c, defined in Figure 3.2.
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Chapter 4 Variational Queries

Now that we have introduced the variational database framework we need a query

language to extract information from a VDB instance. Our approach will build

on existing relational query languages (like SQL and relational algebra) but must

also account for the new aspect of our database: variation.

We formally define variational relational algebra (VRA) in Section 4.1 as our

algebraic query language. A query written in VRA is called a variational query

(v-query); we use query and variational query interchangeably when it is clear from

context. Unlike relational queries that convey an intent over a single database, a

variational query typically conveys the same intent over several relational database

variants. However, a single variational query is also capable of capturing different

intents over different database variants.

Due to the expressiveness of variational queries, we define a type system for

VRA that statically checks a variational query against the underlying variational

schema in Section 4.2. To make variational queries more useable we relieve the

user from repeating the variational schema’s variation in their variational queries.

This is achieved by explicitly annotating queries in Section 4.3.

To understand the meaning of variational queries we define the semantics of

variational queries via the semantics of relational queries in Section 4.4. We define

how to configure a variational query to a relational query in Section 4.4.1. Then,



46

we use the results of multiple relational queries to accumulate the result of the

original variational query in Section 4.4.2.

We also provide a set of syntactic rules that are semantic-preserving in Sec-

tion 4.5. These rules enable factoring and distributing variation points within a

variational query, which enables syntactic refactoring including maximizing shar-

ing within a variational query. Finally, in Section 4.6, we present some properties

of the VRA including the expressiveness and type safety of VRA in Section 4.6.1

and Section 4.6.2, respectively, in addition to the variation-preservation property

of VRA at the semantics level in Section 4.6.3.

4.1 Variational Relational Algebra

To account for variation, VRA combines relational algebra (RA) with choices [29,

41, 75]. Remember that a choice e〈x1, x2〉 consists of a feature expression e, called

the dimension of the choice, and two alternatives x1 and x2. For a given config-

uration c, the choice e〈x1, x2〉 can be replaced by x1 if e evaluates to true under

configuration c, (i.e., EJeKc), or x2 otherwise.

The syntax of VRA is given in Figure 4.1. The selection operation is similar to

standard RA selection except that the condition parameter is variational meaning

that it may contain choices. For example, the query σe〈a1=a2,a1=a3〉(r) selects a

variational tuple u if it satisfies the condition a1 = a2 and sat(e ∧ pc(u)) or if a1 =

a3 and sat(¬e ∧ pc(u)). The projection operation is parameterized by a variational

set of attributes, A. For example, the query πa1,a2
e(r) projects a1 from relation
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Operators:

• := < | ≤ | = | 6= | > | ≥
◦ := ∪ | ∩

Variational conditions:

θ ∈ Condition := b | a • k | a • a | ¬θ | θ ∨ θ
| θ ∧ θ | e〈θ, θ〉

Variational queries:

q ∈ Q := r Relation
| σθq Selection
| πAq Projection
| e〈q, q〉 Choice
| q × q Cartesian Product
| q ◦ q Set Operation
| ε Empty Relation

Figure 4.1: Syntax of variational relational algebra.

r unconditionally, and a2 when sat(e). The choice operation enables combining

two variational queries to be used in different variants based on the dimension. In

practice, it is often useful to return information in some variants and nothing at

all in others. We introduce an explicit empty query ε to facilitate this. Similar

to our definition of the empty query for relational algebra, for VRA we also have:

ε = π{}q. The empty query is used, for example, in q2 in Example 4.1.1. The rest of

VRA’s operations are similar to RA, where all set operations (union, intersection,

and product) are changed to the corresponding variational set operations defined

in Section 2.4.

Our implementation of VRA also provides mechanisms for renaming queries

and qualifying attributes with relation/subquery names. These features are needed
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to support self joins and to project attributes with the same name in different

relations. However, for simplicity, we omit these features from the formal definition

in this thesis.

The result of a variational query is a variational table with the reserved relation

name result . For example, assume that variational tuples (1, 2)f1 and (3, 4)¬f3

belong to a variational relation r(a1, a2), which is the only relation in a VDB with

the trivial feature model true. The query f3〈πa1
f2 (r), ε〉 returns a variational table

with relation schema result(a1
f2)

f3 , which indicates that the result is only non-

empty when f3 is true and that the result includes attribute a1 when f2 is true.

The content of the result relation for the example query is a single variational tuple

(1)f1 . The tuple (3)¬f3 is not included since the projection occurs in the context of

a choice in f3, which is incompatible with the presence condition of the tuple, i.e.,

unsat(f3 ∧ ¬f3). This illustrates how choices can effectively filter the tuples in a

VDB based on the dimension. Example 4.1.1 illustrates how a variational query

can be used to express variational information needs.

Example 4.1.1. Assume a VDB with F = {V3, V4, V5}, and the only varia-

tional table empbio shown in Table 3.4. The VDB has the feature model e2 =

oneof (V3, V4, V5) which states that the three V3–V5 are mutually exclusive. Note

that e2 is different from the feature model emot of the empbio variational table

shown in Table 3.4 . The variational schema for this VDB is:

S2 = {empbio(empno, sex , birthdate, nameV4 , firstnameV5 , lastnameV5)}e2 .

Now, the user wants the employee ID numbers (empno) and their names for vari-

ants that enable either V4 or V5 but not V3. We show the steps to build up multiple
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queries that can extract this information. First, to extract the required attributes

we write the query q0 to project all the needed attributes without considering the

variational aspect of projection.

q0 = πempno,name,firstname,lastname(empbio)

Note that the presence condition attribute (prescond) does not need to be pro-

jected. In fact, the presence condition attribute is returned for every variational

query since that is the only way to keep track of variation at the content level. Ta-

ble 4.1 shows the result of query q0 over the described VDB. Note that the presence

condition of the result is pc(empbio, S2) = oneof (V3, V4, V5)∧ (V3 ∨ V4 ∨ V5) which

can be simplified to oneof (V3, V4, V5). We discuss how the presence conditions of

the returned result and its attributes are generated in Section 4.2.

Table 4.1: Result of the v-query q0 = πempno,name,firstname,lastname(empbio).

oneof (V3, V4, V5) true V4 V5 V5 true

result
empno name firstname lastname prescond
12001 Ulf Hofstetter Ulf Hofstetter V3 ∨ V4 ∨ V5
12002 Luise McFarlan Luise McFarlan V3 ∨ V4 ∨ V5
12003 Shir DuCasse Shir DuCasse V3 ∨ V4 ∨ V5
80001 Nagui Merli Nagui Merli V4 ∨ V5
80002 Mayuko Meszaros Mayuko Meszaros V4 ∨ V5
80003 Theirry Viele Theirry Viele V4 ∨ V5
200001 Selwyn Koshiba Selwyn Koshiba V5
200002 Bedrich Markovitch Bedrich Markovitch V5
200003 Pascal Benzmuller Pascal Benzmuller V5
. . . . . . . . . . . . . . .

Now we pay attention to the variational aspect of the query. Knowing that

the variation encoded in the VDB can be inferred (that is, the VDB exists if and

only if exactly one of the features V3–V5 is enabled, the name attribute only exists

for variants that enable V4 and the firstname and lastname attributes only exist
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for variants that enable V5) and since we only want the projected attributes for

variants that enable V4 or V5 we can write the query q1.

q1 = πempnoV4∨V5 ,name,firstname,lastname(empbio)

Table 4.2 shows the result of this query over the described VDB. Note that the

first three tuples from Table 4.1 are not returned since the query does not project

the empno attribute for variants that enable V3 and attributes name, firstname,

and lastname do not exist for these variants in the VDB. Thus, the tuple will just

be empty and so is dropped.

Table 4.2: Result of the v-queries q1 = πempnoV4∨V5 ,name,firstname,lastname(empbio) and
q′1 = πempno(V4∨V5)∧¬V3 ,nameV4∧¬V3∧¬V5 ,firstnameV5∧¬V3∧¬V4 ,lastnameV5∧¬V3∧¬V4 (empbio).

oneof (V3, V4, V5) V4 ∨ V5 V4 V5 V5 true

result
empno name firstname lastname prescond
12001 Ulf Hofstetter Ulf Hofstetter V3 ∨ V4 ∨ V5
12002 Luise McFarlan Luise McFarlan V3 ∨ V4 ∨ V5
12003 Shir DuCasse Shir DuCasse V3 ∨ V4 ∨ V5
80001 Nagui Merli Nagui Merli V4 ∨ V5
80002 Mayuko Meszaros Mayuko Meszaros V4 ∨ V5
80003 Theirry Viele Theirry Viele V4 ∨ V5
200001 Selwyn Koshiba Selwyn Koshiba V5
200002 Bedrich Markovitch Bedrich Markovitch V5
200003 Pascal Benzmuller Pascal Benzmuller V5
. . . . . . . . . . . . . . .

If desired, we can also make the inferred presence conditions explicit, as demon-

strated in the following query q′1.

q′1 = πempno(V4∨V5)∧¬V3 ,nameV4∧¬V3∧¬V5 ,firstnameV5∧¬V3∧¬V4 ,lastnameV5∧¬V3∧¬V4 (empbio)

The result of the query q′1 is still Table 4.2. Note that all the variation encoded in

the VDB is applied to the result of a query. Thus, the result of a variational query

stands on its own, that is, it is not part of a bigger structure like the variational
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tables in a VDB.

In the example, note that the user does not need to repeat the variability

encoded in the variational schema in their query, that is, they do not need to

annotate name, firstname, and lastname with V4, V5, and V5, respectively. We dis-

cuss this in more detail in Section 4.3. q1 queries all three variants simultaneously

although the returned results are only associated with variants V4 and V5 due to

the annotation of the attribute empno in the query and the presence conditions

of the rest of the projected attributes in the schema. Yet, the query can be fur-

ther simplified with a choice. q2 selects only two out of the three variants explicitly:

q2 = ¬V3〈πempno,name,firstname,lastname(empbio), ε〉 .

Table 4.3 shows the result of this query over the VDB described in Example 4.1.1.

Table 4.3: Result of the v-query q2 = ¬V3〈πempno,name,firstname,lastname(empbio), ε〉.

oneof (V3, V4, V5) ∧ ¬V3 true V4 V5 V5 true

result
empno name firstname lastname prescond
12001 Ulf Hofstetter Ulf Hofstetter V4 ∨ V5
12002 Luise McFarlan Luise McFarlan V4 ∨ V5
12003 Shir DuCasse Shir DuCasse V4 ∨ V5
80001 Nagui Merli Nagui Merli V4 ∨ V5
80002 Mayuko Meszaros Mayuko Meszaros V4 ∨ V5
80003 Theirry Viele Theirry Viele V4 ∨ V5
200001 Selwyn Koshiba Selwyn Koshiba V5
200002 Bedrich Markovitch Bedrich Markovitch V5
200003 Pascal Benzmuller Pascal Benzmuller V5
. . . . . . . . . . . . . . .

Note that, as shown in Table 4.2 and Table 4.3, queries q1 and q2 return the

same set of variational tuples. However, the first three tuples in Table 4.2 could

belong to a variant that enables any of V3–V5 whereas the first three tuples in

Table 4.3 could only belong to variants that either enable V4 or V5. This difference
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is due to the difference in their tables’ presence conditions, that is, q2 filters out

tuples that belong to variant V3 at the schema level while q1 does not. We discuss

this more in Example 4.2.1. More importantly, even though the first three tuples

in Table 4.2 could belong to a variant that enables V3, configuring Table 4.2 for

such a variant drops the first three tuples, since all their attributes would be NULL.

We illustrate how configuring Table 4.2 for variant {V3} drops the first three tuples

in Example 4.4.1.

Expressing the same intent over several database variants by a single query

relieves the DBA from maintaining separate queries for different variants or con-

figurations of the schema. Example 4.1.2 illustrates this point.

Example 4.1.2. Assume a VDB with F = {V1, . . . , V5} and the corresponding

basic schema variants in Table 1.1. The user wants to get all employee names

across all variants. They express this intent by the query q3:

q3 = V1〈(πname(engineerpersonnel)) ∪ (πname(otherpersonnel))

, (V2 ∨ V3)〈πname(empacct)

, (V4 ∨ V5)〈πname,firstname,lastnameempbio, ε〉〉〉

Since the variational schema enforces that exactly one of V1– V5 be enabled, we

can simplify the query by omitting the final choice.

q4 = V1〈(πname(engineerpersonnel)) ∪ (πname(otherpersonnel))

, (V2 ∨ V3)〈πname(empacct), πname,firstname,lastname(empbio)〉
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In principle, variational queries can also express arbitrarily different intents

over different database variants. However, we expect that variational queries are

best used to capture single (or at least related) intents that vary in their realization

since this is easier to understand and increases the potential for sharing in both

the representation and execution of a variational query.

4.2 VRA Type System

In this section, we introduce a static type system for VRA. The type system ensures

that queries are consistent with the underlying variationalschema. That is, that all

referenced relations and attributes are present in the variation contexts in which

they are used. For example, consider the VDB from Example 4.4.1 that contains

only the relation r(a1
f1 , a2, a3)

f1∨f2 . The query πa4r is ill-typed since a4 is not

present in r. Similarly, the queries πa1
¬f1r and f1〈πa2r, πa1r〉 are both ill-typed

since a1 is not present in r when f1 is disabled.

The type of a VRA query is a variational relation schema result(A)e. However,

since the relation name is the same for all queries, we shorten this to Ae, that is, an

annotated variational set of attributes. The annotation e corresponds to the pres-

ence condition of the returned table. The presence conditions of attributes within

A may differ from the corresponding presence conditions in the original variational

schema due to variation constraints imposed by the query. For example, continu-

ing with relation s = r(a1
f1 , a2, a3)

f1∨f2 , the query πa2
f1r has type {a2f1}f1∨f2 . In

the original schema, a2 is present when f1∨f2, while in the query it is present only
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when f1 is enabled.

Figure 4.2 defines a typing relation that relates VRA queries to their types.

The judgment form e, S ` q : Ae
′

states that in variation context e within varia-

tional schema S, variational query q has type Ae
′
. If a query does not have a

type, it is ill-typed. A variation context is a feature expression that tracks which

variants the current subquery is present in. We sometimes use the judgment form

S ` q : Ae
′

when the variation context is the unextended feature model, that is,

pc(S), S ` q : Ae
′
. We assume that the variational set of attributes A is normalized

to remove elements with unsatisfiable presence conditions, but this normalization

is only shown explicitly in the rules where strictly necessary.

The rule Relation-E looks up relation r in the variational schema S and returns

its variational set of attributes A. The presence condition of A is the conjunction of

the relation’s presence condition in the variational schema, e′, the current variation

context, e, and the feature model, pc(S). In this way, the type is constrained to

reflect both the constraints present in the variational schema and the context of

the relation reference in the query. The last premise ensures that the relation exists

in at least one variant by checking that the type’s presence condition is satisfiable.

This means that referencing a relation in a context where it is never present is a

type error.

For a projection πAq, the rule Project-E checks that all projected attributes

A are present in at least one variant of the variation context (second premise)

and that these attributes are subsumed by type of the subquery q (third premise).

The subsumption relation A ≺ A′ used in the third premise is defined as ∀ae1 ∈↓
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Variational queries typing rules:

EmptyRelation-E

e, S ` ε : { }false
Relation-E
r(A)e

′ ∈ S sat(e ∧ pc(s, S))

e, S ` r : Ae∧e
′

Project-E

e, S ` q : A′
e′ | ↓(Ae) | = |A| A ≺↓

(
A′
e′
)

e, S ` πAq :
(
A ∩A′

)e′
Select-E

e, S ` q : Ae
′

e, ↓
(
Ae

′
)
` θ

e, S ` σθq : Ae
′

Choice-E
e ∧ e′, S ` q1 : A1

e1 e ∧ ¬e′, S ` q2 : A2
e2

e, S ` e′〈q1, q2〉 : (↓(Ae11 ) ∪ ↓(Ae22 ))(e1)∨(e2)

Product-E
e, S ` q1 : A1

e1 e, S ` q2 : A2
e2 ↓(Ae11 )∩ ↓(Ae22 ) = {}

e, S ` q1 × q2 : (↓(Ae11 )∪ ↓(Ae22 ))e1∧e2

SetOp-E
e, S ` q1 : A1

e1 e, S ` q2 : A2
e2 ↓(Ae11 ) ≡↓(Ae22 )

e, S ` q1 ◦ q2 : Ae11

Variational condition typing rules:

Boolean-C
e,A ` b

Conjunction-C
e,A ` θ1 e,A ` θ2

e,A ` θ1 ∧ θ2

Disjunction-C
e,A ` θ1 e,A ` θ2

e,A ` θ1 ∨ θ2

Choice-C
e ∧ e′, A ` θ1 e ∧ ¬e′, A ` θ2

e,A ` e′〈θ1, θ2〉

Neg-C
e,A ` θ
e,A ` ¬θ

AttOptVal-C
ae

′ ∈ A sat
(
e′ ∧ e

)
e,A ` a • k

AttOptAtt-C
a1
e1 ∈ A a2

e2 ∈ A sat(e1 ∧ e2 ∧ e)
e,A ` a1 • a2

Figure 4.2: VRA and variational condition typing relation. The rules assume
that the underlying VDB is well-formed. Remember that our theory assumes all
attributes have the same type and all constants belong to attributes’ domain.
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(A) .∃e2.ae2 ∈↓(A′) , sat(e1 ∧ e2), which ensures that all of the projected attributes

are present in the type of the subquery q, and that the presence conditions of the

variational set of projected attributes do not contradict the presence conditions in

the type of q. The result type is the variational set intersection (Figure 2.4) of the

projected attributes and the attributes of the subquery ensuring that the variation

constraints of both are captured. Example 4.2.1 illustrates how the type system

infers a type for a variational query.

The rule Select-E checks if its subquery and variational condition are well-

typed and if so it returns the subquery’s type. The variational condition typing

relation is defined in Figure 4.2 and has the judgment form e, A ` θ, which states

that the variational condition θ is well-formed in variation context e within at-

tribute variational set A. The variational condition typing rules ensure that each

attribute used in a variational condition is present in A and that the presence

condition associate with that attribute does not contradict the current variation

context.

For a choice of queries e′〈q1, q2〉, the rule Choice-E recursively infers the type of

each alternative subquery in a variation context extended to reflect which branch

of the choice the subquery is contained in, that is, e′ for q1 and ¬e′ for q2. The

result type of a choice is the variational set union (Figure 2.4) of the types of

the subqueries annotated by the disjunction of their presence conditions, reflecting

that either one alternative will be chosen or the other. Note that Choice-E is the

only rule that refines the variation context.

The EmptyRelation-E rule states that an empty relation has the type of an
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empty set annotated by false, which is the required base case to ensure that

the type system is variation preserving (see Section 4.6.2). The remaining rules

are straightforward extensions of the standard relational algebra typing rules for

product and set operations to account for variation contexts and variational sets.

Example 4.2.1. Consider the query q1 given in Example 4.1.1. Through this

example, we simplify feature expressions when possible. First, the Project-E rule

is applied which requires the three premises to hold: The first one looks up the

type of empbio relation from the underlying variational schema (Assumption 1 in

Figure 4.3). The second one checks for the subsumption of the projected attributes

from the type of the subquery (Assumption 2 in Figure 4.3). The last one ensures

all projected attributes are valid under the current variation context (Assumption

3 in Figure 4.3). Since all premises hold the type of the query is generated as

shown in Figure 4.3:

(empno(V4∨V5), nameV4 , firstnameV5 , lastnameV5)
e2

Now consider q2 introduced in Example 4.1.1. First, the Choice-E rule is

applied which requires two premises to hold: The first one checks that the left

alternative (which then applies the Project-E rule) of the choice is type-correct,

in which case it also generates its type (Assumption 5 in Figure 4.4). The second

one does the same for the right alternative which is an empty relation query and is

always type-correct. Since both alternative are type-correct the type of the query
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Figure 4.3: Derivation tree for q1 in Example 4.2.1.

Assumption 1:

empbio(empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5 ) ∈ S2 sat(e2 ∧ e2)
Relation-E

e2, S2 ` empbio : (empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5 )
e2

Assumption 2:

{empnoV4∨V5 ,name,firstname, lastname}

≺↓
(
{empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5}e2

)

Assumption 3:

| ↓
(
{empnoV4∨V5 ,name,firstname, lastname}e2

)
| = |{empnoV4∨V5 ,name,firstname, lastname}|

Final derivation tree:

Assumption 1 Assumption 2 Assumption 3
Project-E

e2, S2 ` q1 : (empno(V4∨V5),nameV4 ,firstnameV5 , lastnameV5 )
e2

is generated as shown in Figure 4.4:

(empno, nameV4 , firstnameV5 , lastnameV5)
(e2∧(¬V3))∨false
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Figure 4.4: Derivation tree for q2 in Example 4.2.1.

Assumption 1:

empbio(empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5 )
e2 ∈ S2

Assumption 2:

Assumption 1 sat((e2 ∧ (¬V3)) ∧ e2)
Relation-E

e2 ∧ (¬V3), S2 ` empbio : (empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5 )
e2∧(¬V3)

Assumption 3:

| ↓
(
{empno,name,firstname, lastname}e2∧¬V3

)
| = |{empno,name,firstname, lastname}|

Assumption 4:

{empno,name,firstname, lastname}

≺ {empnoe2∧(¬V3), sexe2∧(¬V3), birthdatee2∧(¬V3),nameV4 ,firstnameV5 , lastnameV5}

Assumption 5 (derivation tree for left = πempno,name,firstname,lastname(empbio)):

Assumption 2 Assumption 3 Assumption 4
Project-E

e2 ∧ (¬V3), S2 ` left : (empno,nameV4 ,firstnameV5 , lastnameV4 )
e2∧(¬V3)

Final derivation tree for q2:

Assumption 5
EmptyRelation-E

e2 ∧ ¬(¬V3), S2 ` ε : { }false
Choice-E

e2, S2 ` q2 : (empno,nameV4 ,firstnameV5 , lastnameV5 )
(e2∧(¬V3))∨false
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4.3 Explicitly Annotating Queries

Variational queries do not need to repeat information that can be inferred from

the variational schema or the type of a query. For example, the query q1 shown in

Example 4.1.1 does not contradict the schema and thus is type correct. However,

it does not include the presence conditions of attributes and the relation encoded

in the schema while q6 repeats this information:

q6 = πempno(V4∨V5)∧¬V3 ,name¬V3∧V4∧¬V5 ,firstname¬V3∧¬V4∧V5 ,lastname¬V3∧¬V4∧V5 (e2〈empbio, ε〉).1

Similarly, the projection in the query q7 = πname,firstname(subq7) where subq7 =

V4〈πname(q6), πfirstname(q6)〉 is written over S2 and it does not repeat the presence

conditions of attributes from its subq7’s type. The query q8 = πnameV4 ,firstname¬V4 (subq7)

makes the annotations of projected attributes explicit with respect to both the

variational schema S2 and its subquery’s type. Although relieving the user from

explicitly repeating variation makes VRA easier to use, queries still have to state

variation explicitly to avoid losing information when decoupled from the schema.

We do this by defining the function bqcS : Q → Sch → Q, that explicitly an-

notates a query q with the schema S. The explicitly annotating query function,

formally defined in Figure 4.5, conjoins attributes and relations presence conditions

with the corresponding annotations in the query and wraps subqueries in a choice

when needed. Note that, q8 and q6 are the result of bq7cS2 and bq1cS2 , respectively,

1The query q6 is the simplified version of

bq1cS2
= πempno(V4∨V5)∧¬V3 ,name¬V3∧V4∧¬V5 ,firstname¬V3∧¬V4∧V5 ,lastname¬V3∧¬V4∧V5 (bempbiocS2

)

where bempbiocS2
= e2〈πempno,nameV4 ,firstnameV5 ,lastnameV5 (empbio), ε〉.
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b.cS : Q → Sch → Q

brcS = e〈πAr, ε〉 where S ` r : Ae

bσθqcS = σθbqcS
bπAqcS = πA∩A′bqcS where S ` bqcS : A′

e′

bq1 × q2cS = bq1cS × bq2cS
be〈q1, q2〉cS = e〈bq1c↓(Se), bq2c↓(S¬e)〉
bq1 ◦ q2cS = bq1cS ◦ bq2cS

bεcS = ε

Figure 4.5: Explicitly annotating a well-typed query with a variational schema.

after simplification 2.

Theorem 4.3.1. If the query q has the type Ae then its explicitly annotated

counterpart has an equivalent type, that is:

S ` q : Ae ⇒ S ` bqcS : A′e
′

and Ae ≡ A′e
′

Proof. By structural induction. We encoded and proved this theorem in the Coq

proof assistant [48].

This theorem shows that the type system applies the schema to the type of a

query although it does not apply it to the query. The type equivalence is variational

set equivalence, defined in Figure 2.4, for normalized variational sets of attributes.

We illustrate the application of Theorem 4.3.1 to queries q1 and q6. Exam-

ple 4.2.1 explained how q1’s type is generated step-by-step. The variation context

and underlying schema are the same and the subquery empbio has the same type.

2More specifically, they are simpilified using rules defined in Figure 4.11
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The projected attribute set annotated with the variation context is:

A2 = {empno(V4∨V5)∧¬V3 , name¬V3∧V4∧¬V5 , firstname¬V3∧¬V4∧V5 , lastname¬V3∧¬V4∧V5}e2 ,

which is clearly subsumed by Aempbio , thus, its intersection with Aempbio annotated

with the presence condition of Aempbio is itself, hence, Aq1 ≡ Aq6 .

Explicitly annotating variational queries not only relieves the user from repeat-

ing the database’s variation in their queries but it is also necessary for the functions

that take a query without taking the schema, such as the query configuration func-

tion which is explained in Section 4.4.1. This is contra to other functions that have

to take both the query and the schema, such as the type system. We explain this

in more details in Section 4.4.1.

4.4 VRA Semantics

We use the semantics of relational queries to define the semantics of variational

queries. In Section 4.4.1, we define the configuration function for variational queries

which takes a configuration and a variational query and returns a relational query.

We also define another version of the variational query configuration function that

generates unique relational query variants. Then, in Section 4.4.2, we define an

accumulation function that accumulates multiple (annotated) relational tables into

a variational table. Finally, in Section 4.4.3, we define the denotational semantics

of VRA using the defined configuration and accumulation functions.
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4.4.1 VRA Configuration

The configuration function maps an explicitly annotated variational query under a

configuration to a relational query, defined in Figure 4.6. Thus, a variational query

can be understood as a set of relational queries, the results of which are gathered

in a single table and tagged with the feature expression stating their variants.

Users can deploy queries for a specific variant by configuring the variational query.

Note that the configuration function takes well-typed, explicitly annotated queries.

Example 4.4.1 illustrates configuring a query and explains why a query passed to

the configuration function must be explicitly annotated. Example 4.4.2 illustrates

the configuration of query q′1 from Example 4.1.1 and the corresponding relational

results table.

Example 4.4.1. Assume the underlying VDB has the variational schema S3 =

{r
(
a1
f1 , a2, a3

)f1∨f2} and the feature space F = {f1, f2}. For valid configurations

of this VDB (that is, { }, {f1}, {f2}, and {f1, f2}), the variational query q5 =

πa1,a2
f1∧f2 ,a3

f2 (r) is configured to the following relational queries:

QJq5K{ } = πa1(r)

QJq5K{f1} = πa1(r)

QJq5K{f2} = πa1,a3(r)

QJq5K{f1,f2} = πa1,a2,a3(r)

However, the query q5 is not explicitly annotated since attribute a1 does not carry
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Variational condition configuration:

CJ.K : Condition → Config → Condition

CJbKc = b

CJa • kKc = a • k
CJa1 • a2Kc = a1 • a2

CJ¬θKc = ¬CJθKc
CJθ1 ∨ θ2Kc = CJθ1Kc ∨ CJθ2Kc
CJθ1 ∧ θ2Kc = CJθ1Kc ∧ CJθ2Kc

CJe〈θ1, θ2〉Kc =

{
CJθ1Kc, if EJeKc = true

CJθ2Kc, otherwise

Variational query configuration:

QJ.K : Q → Config → Q

QJrKc = RJrKc = r

QJσθqKc = σCJθKcQJqKc
QJπAqKc = πAJAKcQJqKc

QJq1 × q2Kc = QJq1Kc ×QJq2Kc

QJe〈q1, q2〉Kc =

{
QJq1Kc, if EJeKc = true

QJq2Kc, otherwise

QJq1 ◦ q2Kc = QJq1Kc ◦QJq2Kc
QJεKc = ε

Figure 4.6: Configuration of variational queries and conditions. The configuration
function assumes that the input, either the variational query or the variational con-
dition, is well-typed. Additionally, the query passed to the configuration function
must be explicitly annotated.
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its variational encoding from the database, that is, it does not have the pres-

ence condition f1. Explicitly annotating this query gives us query q′5 = bq5cS3 =

πa1
f1 ,a2

f1∧f2 ,a3
f2 (r). Configuring q′5 results in the same query as configuring q5 ex-

cept for configurations { } and {f1}. Thus, the correct configuration of q5 is:

QJbq5cS3K{ } = ε

QJbq5cS3K{f1} = πa1(r)

QJbq5cS3K{f2} = πa3(r)

QJbq5cS3K{f1,f2} = πa1,a2,a3(r)

The reason why QJq5K{ } and QJq5K{f1} are incorrect is that q5 is missing the

variation attached to attribute a1 and the configuration function does not consider

the schema of a database while configuring variational queries written over that

database.

Example 4.4.2. Consider the query q′1 given in Example 4.1.1 which is already

explicitly annotated:

q′1 = πempno(V4∨V5)∧¬V3 ,nameV4∧¬V3∧¬V5 ,firstnameV5∧¬V3∧¬V4 ,lastnameV5∧¬V3∧¬V4 (empbio).

Configuring q′1 for all valid configurations ({V3}, {V4}, {V5}) of the given VDB
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results in three relational queries:

QJq′1K{V3} = ε

QJq′1K{V4} = πempno,name(empbio)

QJq′1K{V5} = πempno,firstname,lastname(empbio)

Table 4.4 shows the result of these relational queries.

Often a variational query will yield the same plain query for multiple configura-

tions. For our semantics, it is useful to get the set of unique variants of a variational

query. Thus, we define the unique variants (unique configuration) function, whose

type is given below.

Q(·, ·) : Q → Set FeatName → Set (Var Q)

This function takes a well-typed, explicitly annotated variational query and VDB’s

set of features and returns a set of configured relational queries annotated with

a presence condition. The presence condition is a feature expression generated

from the set of configurations that configured the variational query into the same

relational query. To generate this presence condition from configurations we need

to know the closed set of VDB’s features. This is done by the genFexp(c, F )

that takes a configuration and a closed set of features and generates the fea-

ture expression e that is only satisfiable by the configuration c. For example,

genFexp({f1}, {f1, f2}) = f1 ∧ ¬f2 and genFexp({f1, f2}, {f1, f2}) = f1 ∧ f2. Re-
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Table 4.4: Results of relational queries from configuring the variational query q′1.

(a) Result of the query QJq′1K{V3} = ε.

result
blah blah

(b) Result of the query QJq′1K{V4} = πempno,name(empbio).

result
empno name
12001 Ulf Hofstetter
12002 Luise McFarlan
12003 Shir DuCasse
80001 Nagui Merli
80002 Mayuko Meszaros
80003 Theirry Viele
. . . . . .

(c) Result of the query QJq′1K{V5} = πempno,firstname,lastname(empbio).

result
empno firstname lastname
12001 Ulf Hofstetter
12002 Luise McFarlan
12003 Shir DuCasse
80001 Nagui Merli
80002 Mayuko Meszaros
80003 Theirry Viele
200001 Selwyn Koshiba
200002 Bedrich Markovitch
200003 Pascal Benzmuller
. . . . . . . . .
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member that the set of enabled features of a configuration denote the said config-

uration, for example, {f1} denotes the configuration in which only feature f1 has

been enabled.

In essence, the unique variants function can be defined for all data types that

encode variation. For example, the unique configuration function for variational

queries can be defined as follows.

Q(q, F ) = {qe1∨...∨en | qe1 , . . . , qen ∈ {(QJqKc)genFexp(c,F ) | c ∈ Config}}

The unique configuration for variational sets of attributes (A(·, ·)) and variational

conditions (C(·, ·)) are defined similarly; their types are given below.

A(·, ·) : Set (Var AttrName) → Set FeatName → Var (Set AttrName)

C(·, ·) : Condition → Set FeatName → Var Condition

However, the definition ofQ(·, ·) is not efficient, since it still enumerates all possible

configurations. Thus, we define the more efficient unique configuration function

for variational queries in Figure 4.7.

Example 4.4.3. Consider the variational query q′5 = πa1
f1 ,a2

f1∧f2 ,a3
f2 (r) given in

Example 4.4.1, which is well-typed and explicitly annotated. The unique configu-

ration of this query results in the following set of queries:

Q(q′5, {f1, f2}) = {ε¬f1∧¬f2 , (πa1(r))f1∧¬f2 , (πa3(r))¬f1∧f2 , (πa1,a2,a3(r))f1∧f2}.
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Q(., .) : Q → Set FeatName → Set (Var Q)

Q(r, F ) = {rtrue}
Q(σθq, F ) = {

(
σθq
)e∧eθ | qe ∈ Q(q, F ), θeθ ∈ C(θ, F )}

Q(πAq, F ) = {
(
πAq

)e∧eA | qe ∈ Q(q, F ), AeA ∈ A(A,F )}

Q(q1 × q2, F ) = {
(
q
1
× q

2

)e1∧e2
| qe1

1
∈ Q(q1, F ), qe2

2
∈ Q(q2, F )}

Q(q1 onθ q2, F ) = {
(
q
1
onθ q2

)e1∧e2∧eθ
| qe1

1
∈ Q(q1, F ), qe2

2
∈ Q(q2, F ), θeθ ∈ C(θ, F )}

Q(e〈q1, q2〉, F ) = {qe∧e1
1

| qe1
1
∈ Q(q1, F )} ∪ {q¬e∧e2

2
| qe2

2
∈ Q(q2, F )}

Q(q1 ◦ q2, F ) = {
(
q
1
◦ q

2

)e1∧e2
| qe1

1
∈ Q(q1, F ), qe2

2
∈ Q(q2, F )}

Q(ε, F ) = εtrue

Figure 4.7: Unique configuration of variational queries. The unique configura-
tion function assumes that the input variational query is well-typed and explicitly
annotated by the underlying variational schema of the VDB.

Example 4.4.4. Consider the query q′1 configured in Example 4.4.2:

q′1 = πempno(V4∨V5)∧¬V3 ,nameV4∧¬V3∧¬V5 ,firstnameV5∧¬V3∧¬V4 ,lastnameV5∧¬V3∧¬V4 (empbio).

The unique configuration of it results in:

Q(q′1, {V3, V4, V5}) = {εV3∧¬V4∧¬V5 , (πempno,name(empbio))¬V3∧V4∧¬V5

, (πempno,firstname,lastname(empbio))¬V3∧V4∧¬V5}.

4.4.2 Accumulation of Relational Tables to a Variational Table

After connecting variational queries to relational queries, to define the semantics

of VRA we need to connect the results of multiple relational queries to the result of
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a single variational query. Since we have two approaches to connect a variational

query to relational queries we define two accumulation functions that generate a

variational table from a set of relational tables.

The first accumulation function accum : Set FeatName → Set (Config,Table)

→ Table takes the feature space of a database and a set of relational tables with

their attached configurations and generates a variational table. Figure 4.8 defines

this function in terms of some auxiliary functions. The mkTable function takes

a variational relation schema and a set of variational relation contents and gen-

erates a variational table that has the given schema and the variational tuples

in the input tables. The addPresCondToConfTables function adjusts the content

of tables by mapping the addPresCondToConfContent over a set of tables and

their attached configuration and the addPresCondToConfContent function adds

the prescond attribute to a relational table and its corresponding value which is

a feature expression associated with the given configuration using the closed set

of features. The fitConfTablesToVsch maps the function fitTableToVsch to tables

of a set of relational tables and their attached configuration. The fitTableToVsch

function adjusts a table, both its schema and content, to a variational relation

schema. The tablesToVsch maps the function schToVsch to a set of relational

tables and their attached configuration. The schToVsch generates a variational

relation schema from a set of plain relation schema and their attached configura-

tion given the closed set of features of the database’s feature space.3 Note that to

3In the implementation, for efficiency, we pass the type of the query from VRA’s type system
as the variational relation schema that is generated by the tablesToVsch function.
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Table accumulation function:

accum : Set FeatName → Set (Config,Table) → Table

accum F ts = mkTable vsch tables

where vsch = tablesToVsch F ts

tables = addPresCondToConfTables F fitted

fitted = fitConfTablesToVsch ts vsch

Auxiliary functions for table accumulation:

schToVsch : Set FeatName → Set (Config,RelSch) → RelSch

tablesToVsch : Set FeatName → Set (Config,Table) → RelSch

fitTableToVsch : Table → RelSch → Table

fitConfTablesToVsch : Set (Config,Table) → RelSch → Set (Config,Table)

addPresCondToConfContent : Set FeatName → (Config,RelCont) → RelCont

addPresCondToConfTables : Set FeatName → Set (Config,Table) → Set RelCont

mkTable : RelSch → Set RelCont → Table

Figure 4.8: Accumulation function of a set of relational tables with their attached
configuration into a variational table and its auxiliary functions. The definition
uses spaces to pass parameters. For example, f x states that the parameter x is
passed to the function x and f x y states that parameters x and y are passed to
f as the first and second arguments, respectively.

generate a feature expression from a configuration it is essential to pass the closed

set of features. Example 4.4.5 illustrates the behavior of these auxiliary functions

and the table accumulation function over the relational tables in Table 4.4.

Example 4.4.5. Consider the query q′1 written over the VDB with variational

schema S2 and feature space F = {V3, V4, V5}, all given in Example 4.1.1. All

configured relational queries of q′1 for VDB’s valid configurations and their cor-

responding results in form of a relational table are given in Example 4.4.2 and
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Table 4.4, respectively. Now we show how the relational tables of the configured

queries, shown in Table 4.4, are accumulated to the variational table, shown in

Table 4.2, as the result of the variational query q′1 by using the table accumulation

function accum. As the first step of accumulation, we generate the variational

relation schema by applying tablesToVsch to tables in Table 4.4. This results in

the variational relation schema saccum

saccum = result(empno(¬V3∧V4∧¬V5)∨(¬V3∧¬V4∧V5), name¬V3∧V4∧¬V5 ,

firstname¬V3∧¬V4∧V5 , lastname¬V3∧¬V4∧V5)oneof (V3,V4,V5)

Note that the presence conditions are generated based on the configurations at-

tached to the tables. For example, the presence condition (¬V3∧V4∧¬V5)∨(¬V3∧

¬V4 ∧ V5) associated with the attribute empno is the disjunction of two feature

expressions (¬V3∧V4∧¬V5) and (¬V3∧¬V4∧V5) where they represent the configu-

ration {V4} (associated to Table 4.4b) and {V5} (associated to Table 4.4c), respec-

tively. That is, the configuration {V4} represents the variants that only enable the

feature V4 from V3–V5, thus, its corresponding feature expression is (¬V3∧V4∧¬V5).

That is why we need to pass the closed set of features to the auxiliary functions

(to generate feature expression corresponding to configurations).

In the next step, the tables in Table 4.4 are adjusted so that they all match a

certain relation schema. This is achieved by the fitConfTablesToVsch which gets

all the tables in Table 4.4 with their associated configurations and the variational

relation schema generated by passing them to the tablesToVsch. This is done by
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mapping the fitTableToVsch to all the tables in Table 4.4 with their associated con-

figurations. This function simply adds attributes of the variational relation schema

to the table that do not exists in the table and puts NULL as values (indicated by

the white space) in the tuples for those attributes. Table 4.5–Table 4.7 illustrate

the application of fitTableToVsch to Table 4.4a–Table 4.4c and variational relation

schema saccum .

Table 4.5: Result of the fitTableToVsch applied to Table 4.4a and variational
relation schema saccum .

result
empno name firstname lastname

Table 4.6: Result of the fitTableToVsch applied to Table 4.4b and variational
relation schema saccum .

result
empno name firstname lastname
12001 Ulf Hofstetter
12002 Luise McFarlan
12003 Shir DuCasse
80001 Nagui Merli
80002 Mayuko Meszaros
80003 Theirry Viele
. . . . . . . . . . . .

Then, the addPresCondToConfContent function adds the presence condition

attribute and its values to relation contents of Table 4.5–Table 4.7, resulting in

Table 4.8 which illustrates a set of relation contents that are separated by the red

bold line. Note that since Table 4.5 does not have any tuples, Table 4.8 does not

have any tuples associated with the variant {V3}.
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Table 4.7: Result of the fitTableToVsch applied to Table 4.4c and variational
relation schema saccum .

result
empno name firstname lastname
12001 Ulf Hofstetter
12002 Luise McFarlan
12003 Shir DuCasse
80001 Nagui Merli
80002 Mayuko Meszaros
80003 Theirry Viele
200001 Selwyn Koshiba
200002 Bedrich Markovitch
200003 Pascal Benzmuller
. . . . . . . . . . . .

Table 4.8: Step three of table accumulation adds the presence condition values to
relation contents. The table illustrates a set of relation contents that are separated
by the red bold line between them. The tuples follow the order of attributes in the
relation schema.

result
12001 Ulf Hofstetter ¬V3 ∧ V4 ∧ ¬V5
12002 Luise McFarlan ¬V3 ∧ V4 ∧ ¬V5
12003 Shir DuCasse ¬V3 ∧ V4 ∧ ¬V5
80001 Nagui Merli ¬V3 ∧ V4 ∧ ¬V5
80002 Mayuko Meszaros ¬V3 ∧ V4 ∧ ¬V5
80003 Theirry Viele ¬V3 ∧ V4 ∧ ¬V5
. . . . . . . . . . . . . . .

12001 Ulf Hofstetter ¬V3 ∧ ¬V4 ∧ V5
12002 Luise McFarlan ¬V3 ∧ ¬V4 ∧ V5
12003 Shir DuCasse ¬V3 ∧ ¬V4 ∧ V5
80001 Nagui Merli ¬V3 ∧ ¬V4 ∧ V5
80002 Mayuko Meszaros ¬V3 ∧ ¬V4 ∧ V5
80003 Theirry Viele ¬V3 ∧ ¬V4 ∧ V5
200001 Selwyn Koshiba ¬V3 ∧ ¬V4 ∧ V5
200002 Bedrich Markovitch ¬V3 ∧ ¬V4 ∧ V5
200003 Pascal Benzmuller ¬V3 ∧ ¬V4 ∧ V5
. . . . . . . . . . . . . . .
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Table 4.9: Final step of table accumulation passes the variational relation schema
saccum and relation contents in Table 4.8 to the mkTable function.

(¬V3 ∧ V4 ∧ ¬V5)
oneof (V3, V4, V5) (∨(¬V3 ∧ ¬V4 ∧ V5) ¬V3 ∧ V4 ∧ ¬V5 ¬V3 ∧ ¬V4 ∧ V5 ¬V3 ∧ ¬V4 ∧ V5 true

result
empno name firstname lastname prescond
12001 Ulf Hofstetter ¬V3 ∧ V4 ∧ ¬V5
12002 Luise McFarlan ¬V3 ∧ V4 ∧ ¬V5
12003 Shir DuCasse ¬V3 ∧ V4 ∧ ¬V5
80001 Nagui Merli ¬V3 ∧ V4 ∧ ¬V5
80002 Mayuko Meszaros ¬V3 ∧ V4 ∧ ¬V5
80003 Theirry Viele ¬V3 ∧ V4 ∧ ¬V5
12001 Ulf Hofstetter ¬V3 ∧ ¬V4 ∧ V5
12002 Luise McFarlan ¬V3 ∧ ¬V4 ∧ V5
12003 Shir DuCasse ¬V3 ∧ ¬V4 ∧ V5
80001 Nagui Merli ¬V3 ∧ ¬V4 ∧ V5
80002 Mayuko Meszaros ¬V3 ∧ ¬V4 ∧ V5
80003 Theirry Viele ¬V3 ∧ ¬V4 ∧ V5
200001 Selwyn Koshiba ¬V3 ∧ ¬V4 ∧ V5
200002 Bedrich Markovitch ¬V3 ∧ ¬V4 ∧ V5
200003 Pascal Benzmuller ¬V3 ∧ ¬V4 ∧ V5
. . . . . . . . . . . . . . .

Finally, the mkTable function takes the variational relation schema saccum and

Table 4.8. Note that the values in tuples of Table 4.8 follow the order of the

attributes in the variational relation schema. This results in Table 4.9 which is

equivalent to the result of q′1 given in Table 4.2.

The second accumulation function accum ′ : Set (Var Table) → Table takes

a set of relational tables that are annotated with a feature expression instead of

their attached configuration. Figure 4.9 defines this function and its auxiliary

functions. The auxiliary functions are similar to the ones defined in Figure 4.9

except that they do not need to generate a feature expression from a configuration

and a set of closed features.

4.4.3 VRA Denotational Semantics

Now that we have all required parts we define the denotational semantics of vari-

ational relational algebra using the denotational semantics of relational algebra.
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Table accumulation function:

accum ′ : Set (Var Table) → Table

accum ′ ts = mkTable vsch tables

where vsch = annotTablesToVsch ts

tables = addPresCondToVarTables fitted

fitted = fitVarTablesToVsch ts vsch

Auxiliary functions for table accumulation:

annotSchToVsch : Set (Var RelSch) → RelSch

annotTablesToVsch : Set (Var Table) → RelSch

fitVarTablesToVsch : Set (Var Table) → RelSch → Set (Var Table)

addPresCondToVarContent : Var RelCont → RelCont

addPresCondToVarTables : Set (Var Table) → Set RelCont

Figure 4.9: Accumulation function of a set of relational tables annotated with a
feature expression into a variational table and its auxiliary functions. The defini-
tion uses spaces to pass parameters, e.g., f x = f(x) and f x y = f(x, y).

We assume the existence of the function rqSem : Q → DBInst → Table, which

given a plain query and a plain database, returns a plain table named result ac-

cording to the standard semantics of plain relational algebra. We then define the

VRA denotational semantics vqSem : Q → DBInst → Table as the accumula-

tion of relational tables resulting from the semantics of its configured queries over

their corresponding configured databases for all valid configurations of a variational

database. The mapRQSem function takes a set of relational queries with their at-

tached configurations and a variational database instance and returns the set of

query semantics over their configured database with their attached configurations,

that is, it maps rqSem on the relational queries over their corresponding relational
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VRA denotational semantics:

vqSem : Q → DBInst → Table

vqSem q I = accum fs tabs

where fs = featues I
rqs = qToConfRelQs q (validConfigs I)

tabs = mapRQSem rqs I

Auxiliary functions for VRA denotational semantics:

rqSem : Q → DBInst → Table

mapRQSem : Set (Config,Q) → DBInst → Set (Config,Table)

features : DBInst → Set FeatName

validConfigs : DBInst → Set Config

qToConfRelQs : Q → Set Config → Set (Config,Q)

Figure 4.10: Denotational semantics of variational relational algebra. Note that
the query q is well-typed and explicitly annotated by the schema of the VDB
instance I.

database.4 Finally, the qToConfRelQs takes a well-typed, explicitly annotated

variational query and the set of valid configurations and configures the variational

query for the given configurations and returns the set of configured queries paired

with their corresponding configuration.

4In the implementation, the closed set of features and valid configurations of a VDB are con-
tained within, instead of extracting them from the database. However, we keep the formalization
simple and assume that they can also be retrieved from the VDB.
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4.5 Variation-Minimization Rules

VRA is flexible, since an information need can be represented via multiple vari-

ational queries as demonstrated in Example 4.1.1 and Example 4.1.2. It allows

users to incorporate their personal taste and task requirements into variational

queries they write by having different levels of variation. For example, consider

the explicitly annotated query q6 in Section 4.3.

q6 = πempno(V4∨V5)∧¬V3 ,name¬V3∧V4∧¬V5 ,firstname¬V3∧¬V4∧V5 ,lastname¬V3∧¬V4∧V5 (e2〈empbio, ε〉)

To be explicit about the exact query that will be run for each variant the query

q6’s variation can be lifted up by using choices, resulting in the query q′′6 .

q′′6 = V4〈πempno,nameempbio, V5〈πempno,firstname,lastnameempbio, ε〉〉

While q6 contains less redundancy, q′′6 is more comprehensible, since the variants

are explicitly stated in the dimension of the choice. Thus, supporting multiple

levels of variation creates a tension between reducing redundancy and maintaining

comprehensibility.

We define variation minimization rules in Figure 4.11 that are syntactic and

preserve the semantics. Pushing in variation into a query, that is, applying rules

left-to-right, reduces redundancy while lifting them up, that is, applying rules

right-to-left, makes a query more understandable. When applied left-to-right, the

rules are terminating, since the scope of variation monotonically decreases in size.
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Choice Distributive Rules:

e〈πA1q1, πA2q2〉 ≡ π↓(Ae1),↓(A¬e
2 )e〈q1, q2〉

e〈σθ1q1, σθ2q2〉 ≡ σe〈θ1,θ2〉e〈q1, q2〉
e〈q1 × q2, q3 × q4〉 ≡ e〈q1, q3〉 × e〈q2, q4〉

e〈q1 onθ1 q2, q3 onθ2 q4〉 ≡ e〈q1, q3〉 one〈θ1,θ2〉 e〈q2, q4〉
e〈q1 ◦ q2, q3 ◦ q4〉 ≡ e〈q1, q3〉 ◦ e〈q2, q4〉

CC and RA Optimization Rules:

e〈σθ1∧θ2q1, σθ1∧θ3q2〉 ≡ σθ1∧e〈θ2,θ3〉e〈q1, q2〉
σθ1e〈σθ2q1, σθ3q2〉 ≡ σθ1∧e〈θ2,θ3〉e〈q1, q2〉

e〈q1 onθ1∧θ2 q2, q3 onθ1∧θ3 q4〉 ≡ σe〈θ2,θ3〉 (e〈q1, q3〉 onθ1 e〈q2, q4〉)

Figure 4.11: Selected variation minimization rules.

4.6 Variational Relational Algebra Properties

In this section, we discuss important properties of VRA. We first discuss its expres-

siveness with regards to the relational algebra in Section 4.6.1. Then, we discuss

VRA’s type safety in Section 4.6.2 by taking advantage of the relational algebra’s

type safety and defining a property that connect VRA’s type system to relational

algebra’s type system, called the variation-preserving property.

4.6.1 Expressiveness

VRA enables querying multiple database variants encoded as a singled VDB si-

multaneously and selectively. More precisely, VRA is maximally expressive in the

sense that it can express any set of plain RA queries over any subset of relational
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database variants encoded as a VDB. We prove this claim in Theorem 4.6.1.

Theorem 4.6.1. Given a set of plain RA queries q
1
, . . . , q

n
where each query q

i

is to be executed over a disjoint subset Ii of variants of the VDB instance I, there

exists a variational query q such that ∀c ∈ Config. IJIKc = Ii =⇒ QJqKc = q
i
.

Proof. By construction. Let fi be the feature expression that uniquely character-

izes the variants in each Ii. Then

q = (f1 ∧ ¬f2 ∧ . . . ∧ ¬fn)〈q
1
, (f2 ∧ . . . ∧ ¬fn)〈q

2
, . . . fn〈qn, ε〉 . . .〉〉.

The above construction relies on the fact that every RA query is a valid VRA

(sub)query in which every presence condition is true. Of course, in most realistic

scenarios, we expect that variational queries can be encoded more efficiently by

sharing commonalities and embedding relevant choices and presence conditions

within the variational query.

4.6.2 Type Safety

To show that VRA is type safe we benefit from RA’s type safety [58] by defining the

variation-preserving property for VRA which connects VRA to RA. The variation-

preserving property with respect to variational schema states that if a query q has

type A then configuring the type of a valid explicitly annotated query is the same as

the type of its configured corresponding query. Theorem 4.6.2 proves this property.
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bqcS Ae

q A

type

QJ.Kc AJ.Kc
type

Theorem 4.6.2 is visualized in the diagram below, where

the vertical arrows indicate corresponding configure func-

tions, type indicates VRA’s type system, that is, type(q, S) =

Ae is S ` q : Ae, and type(q, S) indicates RA’s type system

for the relational query q over the relational database schema

S, that is, S ` q : A. We assume that corresponding variation schema and schema

is passed to type systems. Simply put, the relational type of the configured varia-

tional query q with configuration c, that is, type(QJqKc,SJSKc), must be the same

as the configured variational type of the variational query q with configuration c,

that is, AJtype(q, S)Kc. Clearly the diagram commutes : taking either path of 1)

configuring bqcS first and then obtaining the relational type of it or 2) obtaining

the variational type of bqcS first and then configuring it results in the same set of

attributes. The variation-preserving property enforces the maintenance of variants

that a tuple belongs to through running a query at the schema level.5. Exam-

ple 4.6.3 illustrates why the query must be constrained by the variation schema in

the variation-preserving diagram.

Theorem 4.6.2. For all configurations c, if a query q has type Ae then its config-

ured query QJbqcSKc has type AJAeKc, i.e.,

∀c ∈ Config.S ` q : Ae ⇒ SJSKc ` QJbqcSKc : AJAeKc .

Proof. By structural induction. We proved this theorem in the Coq proof assis-

tant [48].

5We define this property as a test at the semantics level and show that all our experimental
queries passed it.
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Theorem 4.6.2 implies that for all valid configurations of a VDB, any variational

query is correlated to a relational query and since RA is type safe, its queries are

type safe. Thus, variational queries are type safe.

Example 4.6.3. Consider the variational query q5 = πa1,a2
f1∧f2 ,a3

f2r given in

Example 4.4.1. It is well-typed and it has the type A = {a1f1 , a2
f1∧f2 , a3

f2}.

Configuring A for the variant that both f1 and f2 are disabled results is an

empty attribute set. However, the type of its configured query for this vari-

ant, i.e., QJq5K{ } = πa1r, is the attribute set {a1}. This violates the variation-

preserving property. A similar problem happens for the variant of {f2}, i.e.,

type
(
QJq5K{f2}

)
= type (πa1,a3r) = {a1, a3} 6= {a3} = AJAK{f2} = AJtype (q5)K{f2}.

However, the variation-preserving property holds for the constrained query by

variation schema, i.e., bq5cS3 = πa1
f1 ,a2

f1∧f2 ,a3
f2r. Thus, the input query to the con-

figuration function QJ.Kc must be explicitly annotated by the underlying variation

schema for the configured query to match the underlying configured schema.

4.6.3 Variation-Preserving Property at the Semantics Level

Since VDB contains multiple database variants, it is important that running a vari-

ational query over a VDB does not lose the variation encoded in a variational query

and the VDB, that is, VRA’s semantics must also be variation-preserving. This is

visualized in the diagram below, where the vertical arrows indicate corresponding
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bqcS t

q t

sem

QJ.Kc TJ.K(s,c)

sem

configuration functions, sem indicates VRA’s denotational

semantics and sem indicates RA’s denotational semantics.

Note that sem runs a variational query on a VDB and sem

runs a relational query variant over its corresponding config-

ured relational database variant. Simply put, the configured

variational table resulting from running the variational query q over the VDB I and

variational schema S with the configuration c, TJsem(q, I)K(type(q,S),c), must be the

same as the relational table resulting from running the configured relational query

with configuration c over its corresponding relational database, sem(QJqKc, IJIKc).

Clearly the diagram commutes: taking either path of 1) obtaining the semantics

of the variational query bqcS first and then configuring it or 2) configuring bqcS

first and then getting its semantics results in the same plain relational table. The

variation-preserving property enforces the maintenance of variants that a tuple

belongs to through running a query at the semantics level. This property follows

from the denotational semantics of VRA since we define VRA’s denotational se-

mantics in terms of RA’s denotational semantics by attaching either configurations

of variants or feature expressions that denote multiple configurations of variants

to the relational queries.
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Chapter 5 Variational Database Use Cases

Thus far we introduced the variational database framework and variational queries.

However, some natural questions are: “How feasible is the variational database

framework?”, “How would an expert generate a VDB and write variational queries?”,

“Can a VDB be generated automatically? And if so, what is required to make this

process automated?”. In this chapter, we describe preliminary work aimed at an-

swering these questions. Thus, the goal of this chapter is twofold: first, to describe

how generating a VDB can be made automatic; second, to guide an expert through

both generating a VDB from a variation scenario when it cannot be done auto-

matically and writing variational queries that express an expert’s information need

over multiple database variants in the variation scenario.

A VDB can be generated automatically when the main variational information

and database variants are available, that is, when the closed set of features, the

feature model, and closed set of database variants are provided. Unfortunately, this

information and these encodings are not available for us to use in order to evaluate

variational databases. Since existing work only focuses on studying a specific

kind of variation in databases and does not encode variation inside the database,

instead, it addresses the problem with tools that simulate the effect of the specific

kind of variation. Consequently, we describe how we systematically generated

two variational databases from real world scenarios where variation appears in
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databases. We take a scenario where variation over either time or space exists

in the database, use the schema variants to generate the variational schema, and

attach feature expressions to tables and tuples to populate the VDB with data for

each use case.

Additionally, variation in software affects not only databases but also how

developers and database administrators interact with databases. Since different

software variants have different information needs, developers must often write

and maintain different queries for different software variants. Moreover, even if a

particular information need is similar across variants, different variants of a query

may need to be created and maintained to account for structural differences in

the schema for each variant. Creating and maintaining different queries for each

variant is tedious and error-prone, and potentially even intractable for large and

open-ended configuration spaces, such as most open-source projects [68].

Thus, for each use case we present a set of variational queries and we illustrate

how VRA realizes the information needs of the different variants of the database

and potentially the corresponding software systems. It achieves this level of ex-

pressiveness by accounting for variation explicitly and linking variation in software

and databases to queries by using the same feature names and configuration space.

We present only a sample of the queries, yet we provide the full query sets online.1

The full query sets capture all of the information needs described in the papers

that we base our variation scenarios on. It is important to note that this makes our

1Complete sets of queries in both formats are available at: https://zenodo.org/record/

4321921.

https://zenodo.org/record/4321921
https://zenodo.org/record/4321921
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query sets potentially biased toward queries containing more variation points since

the focus of the papers is on variational parts of the system. A complete query

set, capturing all information needs for each scenario might contain more plain

queries, that is, queries that perform the same way over all variants. However,

we do not believe this bias is harmful for the role the case studies are intended

to serve, namely, motivating and evaluating variational database systems. For

this role, queries that contain variation are more useful than plain queries, and

additional plain queries can likely be more easily generated if needed.

We distribute the variational queries in two formats: (1) VRA, encoded in

the format used by our VDBMS tool, and (2) plain SQL queries with embedded

#ifdef-annotations to capture variation points. The SQL format provides queries

for studying variational data independently of VDBMS tool and will be more

immediately useful for other researchers studying variational data independently

of our VDBMS tool, but we use VRA in this thesis for its brevity because it is

much more concise.

We first focus on variation in databases over space, Section 5.1. Section 5.1.1

describes the variation scenario from Hall [37] that is the basis of this use case

including the feature set and feature model. Then, Section 5.1.2 and Section 5.1.3

describe generating the variational schema for the described variation scenario and

populating the email SPL VDB with Enron email data. Finally, Section 5.1.4 de-

scribes how variational queries capture the information need adapted from feature

interactions described by Hall [37]. We then switch focus to variation in databases

over time, in Section 5.2. Again, Section 5.2.1 describes the evolution of an em-
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ployee database as the variation scenario from Moon et al. [56] that is the basis of

this use case. Then, Section 5.2.2 and Section 5.2.3 describe generating the vari-

ational schema for the described variation scenario and populating the employee

VDB with a well-known employee dataset.2 Finally, Section 5.2.4 describes the

adapted and adjusted queries from Moon et al. [56]. At the end of this chapter,

Section 5.3, we discuss the trade offs of using variational databases and attempt

to answer the question: “Should variation be encoded explicitly in databases?”.

We distribute the VDBs, SQL scripts for generating them, and queries of our

use cases.3 We distribute the VDBs in both MySQL and Postgres in two forms,

one intended for use with our VDBMS tool, and one intended for more general-

purpose research on variation in databases. We distribute the variational queries

as simple #ifdef-annotated SQL files to promote their broad reuse in the design

and evaluation of other systems for managing variational relational data.

5.1 Variation in Space: Email SPL Use Case

In our first case study, we focus on variation that occurs in “space”, that is, where

multiple software variants are developed and maintained in parallel. In software,

variation in space corresponds to a SPL, where many distinct variants (products)

can be produced from a single shared code base by enabling or disabling features.

A variety of representations and tools have been developed for indicating which

code belongs to which feature(s) and supporting the process of configuring a SPL

2https://github.com/datacharmer/test_db
3Available at: https://zenodo.org/record/4321921

https://github.com/datacharmer/test_db
https://zenodo.org/record/4321921
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to obtain a particular variant.

Naturally, different variants of a SPL have different information needs. For

example, an optional feature in the SPL may require a corresponding attribute

or relation in the database that is not needed by the other features in the SPL.

Currently, there is no good solution to managing the varying information needs of

different variants at the level of the database. One possible solution is to manu-

ally maintain a separate database schema for each variant of the SPL. This works

for some SPLs where the number of products is relatively small and the devel-

oper has control over the configuration process. However, it does not scale to

open-source SPLs or other scenarios where the number of products is large and/or

configuration is out of the developer’s hands. Another possible solution is to use

and maintain a single universal schema that includes all of the relations and at-

tributes used by any feature in the SPL. In this solution, every product will use

the same database schema regardless of the features that are enabled. This solves

the problem of scaling to large numbers of products but is dangerous because it

means that potentially several attributes and relations will be unused in any given

product. Unused attributes will typically be populated by NULL values, which are

a well-known source of errors in relational databases [1].

VDBs solve the problem by allowing the structure of a relational database

to vary in a synchronous way with the SPL. Attributes and relations may be

annotated by presence conditions to indicate in which feature(s) those attributes

and relations are needed. An implementation of the VDB model might use a

universal schema under the hood to realize VDBs on top of a standard relational



89

database management system (indeed, this is exactly how our prototype VDBMS

implementation works), but by capturing the variation in the schema explicitly, we

can validate (potentially variational) queries against the relevant variants of the

variational schema to statically ensure that no NULL values will be referenced.

The email SPL use case shows the use of VDB to encode the variational in-

formation needs of a database-backed SPL. We consider an email SPL that has

been used in several previous SPL research projects (e.g. [8, 3]). It develops a

variational schema that captures the information needs of a SPL based on Hall’s

decomposition of an email system into its component features [37]. The email SPL

has been used in several previous SPL research projects (e.g. [6, 3]). The varia-

tional email database is populated using the Enron email dataset, adapted to fit

our variational schema [65]. Our use case is formed by systematically combining

two pre-existing works:

1. We use Hall’s decomposition of an email system into its component fea-

tures [37] as high-level specification of a SPL.

2. We use the Enron email dataset4 as a source of a realistic email database.

In combining these works, we show how variation in space in an email SPL requires

corresponding variation in a supporting database, how we can link the variation

in the software to variation in the database, and how all of these variants can be

encoded in a single VDB.

4http://www.ahschulz.de/enron-email-data/

http://www.ahschulz.de/enron-email-data/
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5.1.1 Variation Scenario: An Email SPL

The email SPL consists of the following features from Hall [37]:

• addressbook , users can maintain lists of known email addresses with corre-

sponding aliases, which may be used in place of recipient addresses;

• signature, messages may be digitally signed and verified using cryptographic

keys;

• encryption, messages may be encrypted before sending and decrypted upon

receipt using cryptographic keys;

• autoresponder , users can enable automatically generated email responses to

incoming messages;

• forwardmessages , users can forward all incoming messages automatically to

another address;

• remailmessage, users may send messages anonymously;

• filtermessages , incoming messages can be filtered according to a provided

white list of known sender address suffixes; and

• mailhost , a list of known users is maintained and known users may retrieve

messages on demand while messages sent to unknown users are rejected.

Note that Hall’s decomposition separates signature and encryption into two

features each (corresponding to signing and verifying, encrypting and decrypting).
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Table 5.1: Original Enron email dataset schema.

employeelist(eid , firstname, lastname, email id , email2 , email3 , email4 , folder , status)
messages(mid , sender , date, message id , subject , body , folder)
recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)

Since these pairs of features must always be enabled together and they are so

closely conceptually related, we reduce them to one feature each for simplicity.

The listed features are used in presence conditions within the variational schema

for the email VDB, linking the software variation to variation in the database. In

the email SPL, each feature is optional and independent, resulting in the simple

feature model een = true, given as a feature expression. The feature model een is

used as the root presence condition of the variational schema for the email VDB,

implicitly applying it to all relations, attributes, and tuples in the database.

5.1.2 Generating Variational Schema of the Email SPL VDB

To produce a variational schema for the email VDB, we start from plain schema

of the Enron email dataset shown in Table 5.1, then systematically adjust its

schema to align with the information needs of the email SPL described by Hall

[37]. The employeelist table contains information about the employees of the com-

pany including the employee identification number (eid), their first name and last

name (firstname and lastname), their primary email address (email id), alterna-

tive email addresses (e.g. email2 ), a path to the folder that contains their data

(folder), and their last status in the company (status). The messages table contains
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Table 5.2: Variational schema of the email VDB with feature model een . Presence
conditions are colored blue for clarity.

employeelist(eid ,firstname, lastname, email id , folder , status, verification keysignature ,

public keyencryption)
messages(mid , sender , date,message id , subject , body , folder , is system notification,

is encryptedencryption , is autoresponseautoresponder , is signed signature ,

is forward msg forwardmessages)
recipientinfo(rid ,mid , rtype, rvalue)

forward msg(eid , forwardaddr)forwardmessages

mailhost(eid , username,mailhost)mailhost

filter msg(eid , suffix )filtermessages

remail msg(eid , pseudonym)remailmessage

auto msg(eid , subject , body)autoresponder

alias(eid , email ,nickname)addressbook

information about the email messages including the message ID (mid), the sender

of the message (sender), the date (date), the internal message ID (message id),

the subject and body of the message (subject and body), and the exact folder of the

email (folder). The recipientinfo table contains information about the recipient of

a message including the recipient ID (rid), the message ID (mid), the type of the

message (rtype), and the email address of the recipient (rvalue). The referenceinfo

table contains messages that have been referenced in other email messages , for

example, in a forwarded message; it contains a reference-info ID (rid), the mes-

sage ID (mid), and the entire message (reference). This table simply backs up the

emails.

From this starting point, we introduce new attributes and relations that are

needed to implement the features in the email SPL. We attach presence conditions

to new attributes and relations corresponding to the features they are needed to
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support, which ensure they will not be present in configurations that do not include

the relevant features. The resulting variational schema is given in Table 5.2.

For example, consider the signature feature. In the software, implementing

this feature requires new operations for signing an email before sending it out and

for verifying the signature of a received email. These new operations suggest new

information needs: we need a way to indicate that a message has been signed,

and we need access to each user’s public key to verify those signatures (private

keys used to sign a message would not be stored in the database). These needs

are reflected in the variational schema by the new attributes verification key and

is signed , added to the relations employeelist and messages , respectively. The new

attributes are annotated by the signature presence condition, indicating that they

correspond to the signature feature and are unused in configurations that exclude

this feature. Additionally, several features require adding entirely new relations.

For example, when the forward msg feature is enabled, the system must keep track

of which users have forwarding enabled and the address to forward the messages to.

This need is reflected by the new forward msg relation, which is correspondingly

annotated by the forward msg presence condition.

A main focus of Hall’s decomposition [37] is on the many feature interactions.

Several of the features may interact in undesirable ways if special precautions are

not taken. For example, any combination of the forward msg , remail msg , and

autoresponder features can trigger an infinite messaging loop if users configure the

features in the wrong way; preventing this creates an information need to identify

auto-generated emails, which is realized in the variational schema by attributes like
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is forward msg and is autoresponse. As another example consider the interaction

that occurs between the signature and remail msg features: the remail msg feature

enables anonymously sending messages by replacing the sender with a pseudonym,

but this prevents the recipient from being able to verify a signed email. Further-

more, consider the interaction that occurs between the signature and forward msg

features: if Sarah signs a message and sends it to Ina, and Ina forwards the message

to Philippe, then the signature verification operation may incorrectly interpret Ina

as the sender rather than Sarah and fail to verify the message.

For each feature, we (1) enumerated the operations that must be supported

both to implement the feature itself and to resolve undesirable feature interac-

tions, (2) identified the information needs to implement these operations, and (3)

extended the variational schema to satisfy these information needs. We make

similar changes made to accommodate all features and their interactions.

For brevity, we omit some attributes and relations from the original schema that

are irrelevant to the email SPL described by Hall [37], such as the referenceinfo

relation and alternative email addresses.

We distribute the variational schema for the email VDB in two formats. First,

we provide the schema in the encoding used by our prototype VDBMS tool.Second,

we provide the variational schema in plain SQL. The SQL encoding is given by

a “universal” schema containing the relations and attributes of all variants, plus

a relation vdb pcs (element id , pres cond) that captures all of the relevant pres-

ence conditions: that of the variational schema itself (i.e. the feature model), and
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those of each relation and attribute.5 The element id of the feature model is

variational schema; the element id of a relation r is its name r, and of attribute

a in relation r is r.a. The plain SQL encoding of the variational schema supports

the use of the use cases for research on the effective management of variation in

databases independent of VDBMS.

5.1.3 Populating the Email SPL VDB

The final step to create the email VDB is to populate the database with data from

the Enron email dataset, adapted to fit our variational schema [65]. For evaluation

purposes, we want the data from the dataset to be distributed across multiple

variants of the VDB. To simulate this, we identified five plausible configurations

of the email SPL, which we divide the data among. The five configurations of the

email SPL we considered are:

• basic email, which includes only basic email functionality and does not in-

clude any of the optional features from the SPL.

• enhanced email, which extends basic email by enabling two of the most com-

monly used email features, forwardmessages and filtermessages .

• privacy-focused email, which extends basic email with features that focus on

privacy, specifically, the signature, encryption, and remailmessage features.

• business email, which extends basic email with features tailored to an en-

5All encodings are available at: https://zenodo.org/record/4321921.

https://zenodo.org/record/4321921
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vironment where most emails are expected to be among users within the same

business network, specifically, addressbook , signature, encryption, autoresponder ,

and mailhost .

• premium email, in which all of the optional features in the SPL are enabled.

For all variants, any features that are not enabled are disabled.

The original Enron dataset has 150 employees with 252,759 email messages. We

load this data into the employeelist and messages tables defined in Section 5.1.2,

initializing all attributes that are not present in the original dataset to NULL.

For the employeelist table, we construct five views corresponding to the five

variants of the email system described above. We allocate 30 employees to each

view based on their employee ID, that is, the first 30 employees sorted by employee

ID are associated with the basic email variant, the next 30 with the enhanced email

variant, and so on. The presence condition for each tuple is set to the conjunc-

tion of features enabled in that view. We then modify each of the views of the

employeelist table by adding randomly generated values for attributes associated

with the enabled features; e.g., in the view for the privacy-focused variant, we

populate the verification key and public key attributes. Any attribute that is not

present in the given tuple due to a conflicting presence condition will remain NULL.

For example, both the verification key and public key attributes remain NULL for

employees in the enhanced variant view since the presence condition does not in-

clude the corresponding features.

For the messages table, we again create five views corresponding to each of
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the variants. Each tuple is added to the view of the variant that contains the

message’s sender, which updates the tuple’s presence condition accordingly. The

messages table also contains several additional attributes corresponding to optional

features, which we populate in a systematic way. We set is signed to true if the

message sender has the signature feature enabled, and we set is encrypted to true

if both the message sender and recipient have encryption enabled. We populate the

is forward msg , is autoresponse, and is system notification attributes by doing a

lightweight analysis of message subjects to determine whether the email is any of

these special kinds of messages; for example, if the subject begins with “FWD”, we

set the is forward msg attribute to true. If a forward or auto-reply message was

sent by a user that does not have the corresponding feature enabled, we filter it

out of the dataset. After filtering, the messages relation contains 99,727 messages.

For each forward or auto-reply message, we also add a tuple with the relevant

information to the new forward msg and auto msg tables. For employees belonging

to database variants that enable remailmessage, autoresponder , addressbook , or

mailhost we randomly generate tuples in the tables that are specific to each of

these features. Finally, the recipientinfo relation is imported directly from the

dataset. We set each tuple’s presence condition to a conjunction of the presence

conditions of the sender and recipient.

We provide SQL scripts to automate the creation of views for each variantand to

automate the population of these views with tuples from the original dataset,which

also sets each tuple’s presence condition. The resulting database is distributed

in two forms, one with the embedded variational schema which is described in
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Section 5.1.2,and one without the embedded schemafor use with our VDBMS tool

in which the variational schema is provided separately.6 We have tested the email

SPL VDB for the properties described in Section 3.3 and all of them hold.

5.1.4 Email Query Set

To produce a set of queries for the email SPL use case, we collected all of the

information needs that we could identify in the description of the email SPL by

Hall [37].. In order to make the information needs more concrete, we viewed the

requirements of the email SPL mostly through the lens of constructing an email

header. An email header includes all of the relevant information needed to send an

email and is used by email systems and clients to ensure that an email is sent to the

right place and interpreted correctly. More specifically, the email header includes

the sender and receiver of the email, whether an email is signed and the location

of a signature verification key, whether an email is encrypted and the location of

the corresponding public key, the subject and body of the email, the mail host

it belongs to, whether the email should be filtered, and so on. Although there is

obviously other infrastructure involved, the fundamental information needs of an

email system can be understood by considering how to construct email headers

that ensures the email would get where it needs to go and be interpreted correctly

on the other end.

Hall’s decomposition focuses on enumerating the features of the email SPL and

6Both the scripts and different encodings of the email SPL VDB are available at: https:

//zenodo.org/record/4321921.

https://zenodo.org/record/4321921
https://zenodo.org/record/4321921
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enumerating the potential interactions of those features. We deduce the informa-

tion need for each feature by asking: “what information is needed to modify the

email header in a way that incorporates the new functionality?”. We deduce the

information need for each interaction by asking: “what information is needed to

modify the email header in a way that avoids the undesirable feature interaction?”.

We can then translate these information needs into queries on the underlying vari-

ational database.

In total, we provide 27 queries for the email SPL. This consists of 1 query for

constructing the basic email header, 8 queries for realizing the information needs

corresponding to each feature, and 18 queries for realizing the information needs

to correctly handle the feature interactions described by Hall.

We start by presenting the query to assemble the basic email header, Qbasic.

This corresponds to the information need of a system with no features enabled.

We use X to stand for the specific message ID (mid) of the email whose header

we want to construct.

Qbasic = πsender ,rvalue,subject ,body(mes rec)

mes rec ← (σmid=X (messages)) ./ recipientinfo

This query extracts the sender, recipient, subject, and body of the email to pop-

ulate the header. The projection is applied to an intermediate result mes rec

constructed by joining the messages table with the recipientinfo table on recipient

IDs; we reuse this intermediate result also in subsequent queries.
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Taking Qbasic as our starting point, we next construct our set of 8 single-feature

queries that capture the information needs specific to each feature. When a feature

is enabled in the SPL, more information is needed to construct the header of

email X. For example, if the feature filtermessages is enabled, then the query

Qfilter extends Qbasic with the suffix attribute used in filtering. This additional

information allows the system to filter a message if its address contains any of the

suffixes set by the receiver.

Qfilter = πsender ,rvalue,suffix ,subject ,body(temp)

temp ← mes rec emp ./ filter msg

mes rec emp ← mes rec ./rvalue=email id employeelist

We can construct a query that retrieves the required header information whether

filtermessages is enabled or not by combining Qbasic and Qfilter in a choice, as

Qbf = filtermessages〈Qfilter ,Qbasic〉. Although we do not show the process in this

thesis, we can use equivalence laws from the choice calculus [29, 41] to factor

commonalities out of choices and reduce redundancy in queries like Qbf . The

other single-feature queries are written similarly.

As another example of a single-feature query, Qforward captures the information

needs for implementing the forwardmessages feature. It is similar to the previous

queries except that it extracts the forwardaddr from the auto msg table, which is

needed to construct the message header for the new email to be forwarded when
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email X is received by a user with a forwardaddr set.

Qforward = πrvalue,forwardaddr ,subject ,body(temp)

temp ← mes rec emp ./employeelist .eid=forward msg.eid auto msg

The other single-feature queries are similar to those shown here.

Besides single-feature queries, we also provide queries that gather information

needed to identify and address the undesirable feature interactions described by

Hall [37]. Out of Hall’s 27 feature interactions, we determined 16 of them to have

corresponding information needs related to the database; 2 of the interactions

require 2 separate queries to resolve. Therefore, we define and provide 18 queries

addressing all 16 of the relevant feature interactions. As before, we deduced the

information needs through the lens of constructing an email header; in these cases,

the header would correspond to an email produced after successfully resolving the

interaction. However, some interactions can only be detected but not automatically

resolved. In these cases, we constructed a query that would retrieve the relevant

information to detect and report the issue.

One undesirable feature interaction occurs between the two features signature

and forwardmessages : if Philippe signs a message and sends it to Sarah, and Sarah

forwards the message to an alternate address Sarah-2, then signature verification

may incorrectly interpret Sarah as the sender rather than Philippe and fail to verify

the message (Hall’s interaction #4). A solution to this interaction is to embed the

original sender’s verification information into the email header of the forwarded
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message so that it can be used to verify the message, rather than relying solely on

the message’s “from” field.

Below, we show a variational query Qsf that includes four variants correspond-

ing to whether signature and forwardmessages are enabled or not independently.

The information need for resolving the interaction is satisfied by the first alter-

native of the outermost choice with condition signature ∧ forwardmessages . The

alternatives of the choices nested to the right satisfy the information needs for

when only signature is enabled, only forwardmessages is enabled, or neither is en-

abled (Qbasic). We don’t show the single-feature Qsig query, but it is similar to

other single-feature queries shown above.

Qsf = signature ∧ forwardmessages

〈πrvalue,forwardaddr ,emp1 .is signed ,emp1 .verification key(temp)

, signature〈Qsig , forwardmessages〈Qforward ,Qbasic〉〉〉

temp ← ((((σmid=X (messages)) ./ recipientinfo)

./sender=emp1 .email id (ρemp1 employeelist))

./rvalue=emp2 .email id (ρemp2 employeelist)) ./ forward msg

The query Qsf also resolves another consequence of the interaction between these

two features. This time Sam successfully verifies message X and forwards it to

Sam2 which changes the header in the system such that it states message X has

been successfully verified, thus, the message could be altered by hackers while it

is being forwarded (Hall’s interaction #27). The system can use Qsf to generate
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the correct header in this scenario again.

Some feature interactions require more than one query to satisfy their informa-

tion need. For example, assume both encryption and forwardmessages are enabled.

Philippe sends an encrypted email X to Sarah; upon receiving it the message is

decrypted and forwarded it to Sarah-2 (Hall’s interaction #9). This violates the

intention of encrypting the message and the system should warn the user. Queries

Qef and Q ′ef satisfy the information need for this interaction when a message is

encrypted or unencrypted, respectively.

Qef = encryption ∧ forwardmessages

〈πrvalue(σmid=X∧is encrypted(messages))

, encryption〈Qencrypt , forwardmessages〈Qforward ,Qbasic〉〉

Q ′ef = encryption ∧ forwardmessages

〈temp, encryption〈Qencrypt , forwardmessages〈Qforward ,Qbasic〉〉〉

temp ← πrvalue,forwardaddr ,subject ,body(σmid=X∧¬is encrypted

(mes rec emp ./employeelist .eid=forward msg.eid forward msg))

However, managing feature interactions is not necessarily complicated. Some in-

teractions simply require projecting more attributes from the corresponding single-

feature queries. For example, assume both filtermessages and mailhost features

are enabled. Philippe sends a message to a non-existant user in a mailhost that

he has filtered. The mailhost generates a non-delivery notification and sends it to
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Philippe, but he never receives it since it is filtered out (Hall’s interaction #26).

The system can check the is system notification attribute for the Qfilter query and

decide whether to filter a message or not. Therefore, we can resolve this interaction

by extending the single-feature query for filtermessages to Q ′filter .

Q ′filter = πsender ,rvalue,suffix ,is system notification,subject ,body(temp)

temp ← mes rec emp ./employeelist .eid=filter msg.eid filter msg

Overall, for the 18 interaction queries we provide, 12 have 4 variants, 3 have 3

variants, 2 have 2 variants, and 1 has 1 variant.

5.2 Variation in Time: Employee Use Case

In our second case study, we focus on variation that occurs in time, that is, where

the software variants are produced sequentially by incrementally extending and

modifying the previous variant in order to accommodate new features or changing

business requirements. Although new variants conceptually replace older variants,

in practice, older variants must often be maintained in parallel; external depen-

dencies, requirements, and other issues may prevent clients from updating to the

latest version. Variation in software over time directly affects the databases such

software depends on [68], and dealing with such changes is a well-studied problem

in the database community known as database evolution [62].

Although research on database evolution has produced a variety of solutions for
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managing database variation over time, these solutions do not treat variation as

an orthogonal property and so cannot also accommodate variation in space. The

goal of our work on variational databases is not to directly compete with database

evolution solutions for time-only variation scenarios, but rather to present a more

general model of database variation that can accommodate variation in both time

and space, and that integrates with related software via feature annotations.

We demonstrate variation in time by using a VDB to encode an employee

database evolution scenario systematically adapted from Moon et al. [56] and pop-

ulated by a dataset that is widely used in databases research.7

5.2.1 Variation Scenario: An Evolving Employee Database

Moon et al. [56] describe an evolution scenario in which the schema of a company’s

employee management system changes over time, yielding the five versions of the

schema shown in Table 5.3. In V1, employees are split into two separate relations for

engineer and non-engineer personnel. In V2, these two tables are merged into one

relation, empacct . In V3, departments are factored out of the empacct relation and

into a new dept relation to reduce redundancy in the database. In V4, the company

decides to start collecting more personal information about their employees and

stores all personal information in the new relation empbio. Finally, in V5, the

company decides to decouple salaries from job titles and instead base salaries on

individual employee’s qualifications and performance; this leads to dropping the

7https://github.com/datacharmer/test_db

https://github.com/datacharmer/test_db
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Table 5.3: Evolution of an employee database schema from Moon et al. [56].

Version Schema

V1

engineerpersonnel (empno, name, hiredate, title, deptname)
otherpersonnel (empno, name, hiredate, title, deptname)
job (title, salary)

V2
empacct (empno, name, hiredate, title, deptname)
job (title, salary)

V3

empacct (empno, name, hiredate, title, deptno)
job (title, salary)
dept (deptname, deptno, managerno)

V4

empacct (empno, hiredate, title, deptno)
job (title, salary)
dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate, name)

V5

empacct (empno, hiredate, title, deptno, salary)
dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate, firstname, lastname)

job relation and adding a new salary attribute to the empacct relation. This

version also separates the name attribute in empbio into firstname and lastname

attributes.

We associate a feature with each version of the schema, named V1 . . . V5. These

features are mutually exclusive since only one version of the schema is valid at

a time. This yields the feature model eemp . Also, note that the feature model

represent a restriction on the entire database.

eemp = oneof (V1, V2, V3, V4, V5)
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Table 5.4: Employee variational schema with feature model. eemp .

engineerpersonnel(empno,name, hiredate, title, deptname)V1

otherpersonnel(empno,name, hiredate, title, deptname)V1

empacct(empno,nameV2∨V3 , hiredate, title,

deptnameV2 , deptnoV3∨V4∨V5 , salaryV5)V2∨V3∨V4∨V5

job(title, salary)V2∨V3∨V4

dept(deptname, deptno,managerno)V3∨V4∨V5

empbio(empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5)V4∨V5

5.2.2 Generating Variational Schema of the Employee VDB

The variational schema for this scenario is given in Table 5.4. It encodes all

five of the schema versions in Table 5.3 and was systematically generated by the

following process. First, generate a universal schema from all of the plain schema

versions; the universal schema contains every relation and attribute appearing

in any of the five versions. Then, annotate the attributes and relations in the

universal schema according to the versions they are present in. For example,

the empacct relation is present in versions V2–V5, so it will be annotated by the

feature expression V2 ∨ V3 ∨ V4 ∨ V5, while the salary attribute within the empacct

relation is present only in version V5, so it will be annotated by simply V5. The

overall variational schema will be annotated by the feature model eemp , described in

Section 5.2.1. Since the presence conditions of attributes are implicitly conjuncted

with the presence condition of their relation that contains them, we can avoid

redundant annotations when an attribute is present in all instances of its parent
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relation. For example, the empbio relation is present in V4 ∨ V5, and the birthdate

attribute is present in the same versions, so we do not need to redundantly annotate

birthdate.

Similar to the email SPL VDB, we distribute the variational schema for the

employee VDB in two formats: First, we provide the schema in the encoding used

by our prototype VDBMS tool.Second, we provide a direct encoding in SQL that

generates the universal schema for the VDB in either MySQL or Postgres.The

variability of the schema is embedded within the employee VDBusing the same

encoding as described at the end of Section 5.1.2.8

5.2.3 Populating the Employee VDB

Finally, we populate the employee VDB using data from the widely used employee

database linked to in this subsection’s lede. This database contains information

for 240, 124 employees. To simulate the evolution of the database over time, we

divide the employees into five roughly equal groups based on their hire date within

the company. For example, the first group consists of employees hired before

1988−01−01, while the second group contains employees hired from 1988−01−01

to 1991 − 01 − 01. Each group is assumed to have been hired during the lifetime

of a particular version of the database, and is therefore added to that version of

the database and also to all subsequent versions of the database. This simulates

the fact that as a database evolves, older records are typically forward propagated

8All encodings of the employee variational schema are available at: https://zenodo.org/

record/4321921.

https://zenodo.org/record/4321921
https://zenodo.org/record/4321921
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to the new schema [62]. Thus, V5 contains the records for all 240, 124 employees,

while older versions will contain progressively fewer records. The final employee

VDB has 954, 762 employee due to this forward propagation, despite having the

same number of employees as the original database.

The schema of the employee database used to populate the employee VDB is

different from all versions of the variational schema, yet it includes all required

information. Thus, we manually mapped data from the original schema onto each

version of the variational schema.

We provide SQL scripts of required queries to automatically generate the em-

ployee VDB. We also provide SQL scripts to automate the separation of each

group of employees into views according to their hire dateand populating those

views from data in the employee database.9

As for any VDB, if an attribute is not present in any of the variants covered

by a tuple’s presence condition, that attribute will be set to NULL in the tuple.

We do this even though the relevant information may be contained in the original

employee database to ensure that we have a consistent VDB. For example, while

inserting tuples into the V4 view of the empbio table, we always insert NULL values

attributes firstname and lastname. We also provide the final employee VDB in

four flavors: both with and without the embedded schema, and in both cases,

encoded in MySQL and PostgreSQL format.10 We have tested the employee VDB

for the properties described in Section 3.3 and all of them hold.

9All the scripts are available at: https://zenodo.org/record/4321921.
10Both formats are availabe at: https://zenodo.org/record/4321921.

https://zenodo.org/record/4321921
https://zenodo.org/record/4321921
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5.2.4 Employee Query Set

For this use case, we have a set of existing plain queries to start from. Moon et al.

[56] provides 12 queries to evaluate the Prima schema evolution system. We adapt

these queries to fit our encoding of the employee VDB described in Section 5.2.

We provide the queries in both the VRA format usable by VDBMS and as #ifdef-

annotated SQL.11 We give an example of query written as #ifdef-annotated at the

end of this section. 9 of these queries have one variant, 2 have two variants, and 1

has three variants.

Moon’s queries are of two types: 6 retrieve data valid on a particular date (cor-

responding to V3 in our encoding), while 6 retrieve data valid on or after that date

(V3–V5 in our encoding). For example, one query expresses the intent “return the

salary of employee number 10004” at a time corresponding to V3, which we encode:

empQ1 = πsalaryV3 (σempno=10004(empacct)) ./empacct .title=job.title job.

Note that the presence condition of the only attribute salary determines the pres-

ence condition of the resulting table.

In general and for simplicity, the shared part of presence conditions of projected

attributes is factored out and applied to the entire table. Assume the returned table

as a result of query has the schema (a1
e∧e1 , a2

e∧e2). The shared restriction can be

factored out and applied to the entire table, i.e., (a1
e1 , a2

e2)e.

11All queries are available at: https://zenodo.org/record/4321921.

https://zenodo.org/record/4321921
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We encode the same intent, but for all times at or after V3 as follows:

empQ2 = V3 ∨ V4 ∨ V5〈

πsalary(V3 ∨ V4〈((σempno=10004(empacct))) ./ job, σempno=10004(empacct)〉)

, ε〉

There are a variety of ways we could encod both empQ1 and empQ2. For empQ1

we could equivalently have embedded the projection in a choice, V3〈πsalary(. . .), ε〉,

however attaching the presence condition to the only projected attribute deter-

mines the presence condition of the resulting table and so achieves the same effect.

In empQ2 we use choices to structure the query since we have to project on a

different intermediate result for V5 than for V3 and V4.

The feature expression V3 ∨ V4 ∨ V5 determines the database variants to be

inquired. Since the schema of empacct and job tables are the same in variants V3

and V4 they both have the same query. Note that one could move the condition

V3∨V4∨V5 to the projected attribute which results in empQ ′2, however, this query

is wrong because the last alternative of the choice projects attribute salary from an

empty relation which is incorrect. It is important to understand that the behavior

of an empty relation is exactly the same as its behavior in relational algebra and

one should be careful of using it in operations such as projection, selection, and

join.
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empQ ′2 = πsalaryV3∨V4∨V5

(V3 ∨ V4〈(σempno=10004(empacct)) ./empacct .title=job.title job

, V5〈σempno=10004(empacct), ε〉〉)

As another example, the following query realizes the intent to “return the name

of the manager of department d001” during the time frame of V3–V5:

empQ3 = V3 ∨ V4 ∨ V5〈

πname,firstname,lastname(V3〈empacct , empbio〉 ./empno=managerno

(σdeptno=“d001”(dept)))

, ε〉

Note that even though the attributes name, firstname, and lastname are not

present in all three of the variants corresponding to V3–V5, the VRA encoding

permits omitting presence conditions that can be completely determined by the

presence conditions of the corresponding relations or attributes in the variational

schema. So, empQ3 is equivalent to the following query in which the presence

conditions of the attributes from the variational schema are listed explicitly in the
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projection:

empQ ′3 = V3 ∨ V4 ∨ V5〈

πnameV3∨V4 ,firstnameV5 ,lastnameV5 (V3〈empacct , empbio〉

./empno=managerno (σdeptno=“d001”(dept)))

, ε〉

Allowing developers to encode variation in variational queries based on their pref-

erence makes VRA more flexible and easy to use. Also, variational queries are

statically type-checked to ensure that the variation encoded in them does not con-

flict the variation encoded in the variational schema.

Finally, we want to briefly illustrate what queries look like in the #ifdef-

annotated SQL format that we distribute as a potentially more portable and easy-

to-use format for other researchers. Below is the query empQ3 in this format.

#ifdef V3 || V4 || v5

#ifdef V3 || V4

SELECT name

#else

SELECT firstname, lastname

#endif

FROM

#ifdef V3

empacct

#else

empbio

#endif
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JOIN (SELECT * FROM dept WHERE deptno="d001")

ON empno=manageno

5.3 Discussion: Should Variation Be Encoded Explicitly in Databases?

In this section we discuss the use cases and our encodings of VDB and variational

queries in the context of the question: Should variation be encoded explicitly in

databases?

Expressiveness of explicit variation. The use cases in this chapter show

that by treating variation as an orthogonal concern and embedding it directly in

databases and queries (via presence conditions and choices), one can encode data

variation scenarios in both time and space. In fact, VDBs and variational queries

are maximally expressive in the sense that any set of plain relational databases

can be encoded as a single VDB and any set of plain queries over the variants of

a VDB can be encoded as a variational query.12

The expressiveness of our approach is its main advantage over other ways to

manage database variation. When working with a form of variation that already

has its own specialized solution (e.g. schema evolution, data integration), the ex-

pressiveness of explicit variation is probably not worth the additional complexity.

The expressiveness of explicit variation is most useful when working with a form

12The expressiveness of VDBs and variational queries can be proved by construction. For
VDBs, one can simply take the union of all relations, attributes, and tuples across all variants,
then attach presence conditions corresponding to which variants each is present in. For variational
queries, all variants can be organized under a tree of choices that similarly organizes the variants
in the appropriate way.
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of variation that is not well supported (e.g. query-level variation in SPLs), or when

combining multiple forms of variation in one database (e.g. during SPL evolution).

We expect that ill-supported forms of variation are common in industry and

justify the expressiveness of explicit variation. We illustrated an example of this

in Section 1.1.2.

Complexity of explicit variation. The generality of explicit variation comes

at the cost of increased complexity. The complexity introduced by presence con-

ditions and choices is similar to the complexity introduced by variation annota-

tions in annotative approaches to SPL implementation [46]. There is widespread

acknowledgment that unrestricted use of variation annotations, such as the C Pre-

processor’s #ifdef-notation [35], makes software difficult to understand [50] and is

error prone [34]. However, so-called disciplined use of variation annotations, where

annotations are used in a way that is consistent with the object language syntax of

variants, may suffer less from such issues [52]. In VDBs, and in the VRA notation

for variational queries, annotations are disciplined since presence conditions and

choices are integrated into the existing syntax of relational database schemas and

relational algebra. Note that annotation discipline is not enforced in the #ifdef-

annotated SQL notation that we use to distribute the variational queries associated

with our use cases.

Subjectively, the development of our use cases suggests that the impact of

variation annotations on understandability is moderate for variational schemas

and VDBs, and significant for variational queries written in VRA, despite the fact
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that such annotations are disciplined. That is, we believe that presence conditions

make clear the structural and content variation in our example VDBs without

significantly impacting the understandability of the overall structure and content

of the variant databases. However, the understandability of variational queries do

seem to be significantly impacted by the use of presence conditions and choices,

despite the fact that their use is disciplined in the VRA notation.

It is possible that a more restrictive and/or coarse-grained form of variation in

variational queries would make them easier to understand at the cost of increased

redundancy and (potentially) reduced expressiveness. This tradeoff is one we al-

ready made when considering how to encode variation in the content of a VDB.

Specifically, we do not support cell-level variation in a VDB (e.g. choices within

individual cells). This does not reduce the expressiveness of content variation in

VDBs, since cell-level variation can be simulated by row variation, but it does

increase redundancy, since all non-varied cells in the row must be duplicated. Sim-

ilarly, variation in queries could be restricted to expression-level choices, with no

choices or annotations in conditions or attribute lists. This would likely make un-

derstanding individual query variants easier at the cost of increasing redundancy

among the alternatives of each choice.

Alternatively, the understandability of variational queries could be improved

through tooling, for example, using background colors [33], virtual separation of

concerns [45], or view-based editing [76, 69]. Future work should validate our

subjective assessment of the understandability VDBs and variational queries, and

explore techniques for improving this concern.
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Analyzability of explicit variation. The relationship of our work to alterna-

tive approaches can be viewed through the lens of annotative vs. compositional

variation, familiar to the SPL community [46]. VDBs and variational queries rely

on generic annotations embedded directly in schemas and queries, respectively,

while approaches from the databases community often express variation through

separate artifacts, such as views [14]. Annotative vs. compositional representations

often exhibit the same tradeoff between expressiveness and complexity described

above: annotative variation tends to be general and expressive, while compositional

variation tends to be more restrictive but support modular reasoning [46]. Tradi-

tionally, another advantage of compositional approaches is that they are more an-

alyzable thanks to the ability to analyze components separately (i.e. feature-based

analysis [73]), a benefit shared by database views. However, in the last decade

there has been a significant amount of work in the SPL community to improve

the analyzability of annotative variation by analyzing whole variational artifacts

directly (i.e. family-based analysis [73]). Although not presented here, we build

directly on this body of work, especially work on variational typing [22, 23], to en-

able efficiently checking variational queries against all variants of a VDB, among

other properties. Thus, the increased complexity of explicit variation annotations

does not prevent us from verifying its correctness.
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Chapter 6 Variational Database Management System (VDBMS)

We implement a prototype of the VDB and VRA frameworks as the Variational

Database Management System (VDBMS). VDBMS is implemented in Haskell.

VDBMS sits on top of any plain relational DBMS, which will store the data in

the form of variational tables, explained in Section 3.2. The presence condition of

tuples is stored as an attribute called “presence condition”. Note that the rest of

the presence conditions are stored on the Haskell side of the system. The presence

conditions stored in the database are encoded as strings, unlike the presence con-

ditions on the Haskell side of VDBMS, which are represented using an algebraic

data type. To support running VDBMS with multiple different plain relational

DBMS backends, we provide a shared interface for communicating with the back-

end DBMS and instantiate it for different database engines such as PostgreSQL

and MySQL. An expert can extend VDBMS to another database engine by writing

methods for connecting to and querying from the database.

6.1 VDBMS Architecture

Figure 6.1 shows the architecture of VDBMS. We assume a VDB and its variational

schema are generated by an expert and are stored in a DBMS. A VDB can be

configured to its plain relational database variants by providing the configuration
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Figure 6.1: VDBMS architecture and execution flow of a variational query. The
dotted double-line from the input variational query indicates the dependency of
passing the variational query to this module only if it is valid. The dashed gray
arrows with diamond heads demonstrate an option for the flow of the variational
query. The blue filled arrows track the data flow, the green hollow arrows indicate
an input to a module.

of the desired variant, Figure 3.2. For example, a SPL developer configures a VDB

to produce software and its database for a client.

To extract information from a VDB, a user inputs a variational query q to

VDBMS. First, q is checked by the type system. If the query is ill-typed, the user

gets an error explaining what part of the query violated the variational schema.

Otherwise, q is explicitly annotated by the schema and is passed to the variation
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minimization module, to simplify q. The simplified query is then sent to the

generator module where SQL queries are generated from variational queries by

different approaches explained in Section 6.2.

All generated SQL queries are then executed on the underlying VDB. The result

could be either a variational table or multiple variational tables, depending on the

approach chosen by the SQL generator. The variational tables are passed to the

variational table builder to create one variational table that filters out duplicate

and invalid tuples, shrinks presence conditions, and eventually, returns the final

variational table to the user. Note that the variational table builder module uses

the accumulation functions introduced in Section 4.4.2 in addition to filtering out

tuples and cleaning a variational table.

6.2 SQL Generators

Since VDBMS sits on top of a plain relational DBMS, in order to run variational

queries we must translate them into (sets of) plain relational queries, which is

the SQL generator module’s task. These generators also add relation qualifiers to

attributes in addition to adding presence conditions to projected attributes. We

demonstrate this in Example 6.2.1 and Example 6.2.2. Then, VDBMS synthesizes

the result into a variational table, which is the variational table builder module’s

task. Given an explicitly annotated, well-typed variational query q, we provide

five approaches to generate SQL queries for q:

1. Naive Brute Force (NBF): Configures a variational query q for all valid con-
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figurations, that is, ∀c ∈ Config, translates them to RA queries, and finally

generates SQL queries after renaming all subqueries and adding the pro-

jection of presence conditions to the set of projected attributes.1 The SQL

queries are sent to underlying DBMS and the results are gathered and cleaned

up in the variational table builder module. Here is the flow of how results

are generated by this approach:

q
QJqKc

−−−−→ [(c, q)]
generate SQL

−−−−−−−−−−→
+ project PC

[(c, sql)]
run queries

−−−−−−−→ [(c, table)]
build table

−−−−−−−→ table

2. Unique Brute Force (UBF): This approach is just like NBF except that we

only generate SQL queries for unique RA queries produced by configuring

the variational query. That is, it uses the unique variants function Q(q, F )

introduced in Section 4.4.1. The implementation of this function is more

efficient than its definition. That is:

q
Q(q,F)
−−−−→ [qe]

generate SQL

−−−−−−−−−−→
+ project PC

[sqle]
run queries

−−−−−−−→ [tablee]
build table

−−−−−−−→ table

Example 6.2.1. Consider query q1 = πempnoV4∨V5 ,name,firstname,lastname(empbio)

given in Example 4.1.1. Its corresponding SQL queries generated by ei-

ther NBF or UBF that will eventually be run on the database. The fea-

ture expression representing groups of valid configurations are given be-

low. For configurations {} and {V3} (indicated by the feature expression

1Remember that variational queries written by a user does not explicitly project the presence
condition attribute, however, to keep track of the variation associated with tuples.
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(¬V3 ∧ ¬V4 ∧ ¬V5) ∨ (V3 ∧ ¬V4 ∧ ¬V5)) we have the query:

SELECT NULL

For configuration {V4} (indicated by the feature express ¬V3 ∧ V4 ∧ ¬V5) we

have the query:

SELECT empno,

name,

CONCAT( ’(’, t0.prescond, ’)’) AS prescond

FROM v_empbio AS t0

And finally, for configuration {V5} (indicated by the feature expression ¬V3∧

¬V4 ∧ V5) we have the query:

SELECT empno,

firstname,

lastname,

CONCAT( ’(’, t0.prescond, ’)’) AS prescond

FROM v_empbio AS t0

Note that the only difference between NBF and UBF is that the former

uses configurations and assigns them to SQL queries and then gathers their

tables into a variational tables whereas the latter uses the feature expressions

indicating a group of configuration and assigns them to SQL queries and

then gathers their tables into a variational tables. For example, NBF uses

the configurations given in this examples and runs the first SQL query twice

whereas UBF uses the feature expressions and thus, runs each SQL only

once. This does not have a big impact if the query is an empty query, as
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in this example, but it could be significant in queries with more and larger

shared variants.

3. Union-All-Variants (UAV): This approach takes the SQL queries generated

by UBF and unions them to just run one SQL query. In order to do so it

forces all the SQL queries to return the same relation schema. Additionally,

it applies the presence condition of SQL query to its tuples by concating it

with the presence condition attribute in the projected attribute set. The

query is sent to the underlying DBMS and the result is cleaned up by the

variational table builder. Finally, it is returned to the user as a variational

table. Note that cleaning up the result is part of variational table builder

tasks. That is:

q
Q(q,F)
−−−−→ [qe]

unify schema

−−−−−−−−−→
+ generate SQL

[sqle]
inject PC

−−−−−−→ [sql]
union

−−−−→ sql′
run query

−−−−−−−→ table

Example 6.2.2. Consider query q1 = πempnoV4∨V5 ,name,firstname,lastname(empbio)

introduced in Example 4.1.1. The final SQL query generated by the UAV

approach is:

(SELECT empno,

firstname,

lastname,

NULL AS name,

CONCAT( ’(’, t0.prescond, ’)’, ’) AND (’

, ’(NOT v3 AND v4) AND NOT v5’

, ’)’) AS prescond,

FROM empbio AS t0)
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UNION ALL

(SELECT empno,

NULL AS firstname,

NULL AS lastname,

name,

CONCAT( ’(’, t1.prescond, ’)’, ’) AND (’

, ’(NOT v3 AND NOT v4) AND v5’

, ’)’) AS prescond

FROM empbio AS t1)

4. Injected Naive Brute Force (NBF(i)): Alternatively, the feature expression

associated with a configuration can be injected inside the SQL query. This

simplifies the variational table builder to just fix the schema of the returned

tables. Example 6.2.3 illustrates this approach.

q
QJqKc

−−−−→ [(c, q)]
generate SQL

−−−−−−−−−−→
+ inject PC

[sql]
run queries

−−−−−−−→ [table]
build table

−−−−−−−→ table

5. Injected Unique Brute Force (UBF(i)): Similarly, the injection of feature

expressions into the SQL queries can be applied to the UBF approach. Ex-

ample 6.2.3 illustrates this approach.

q
Q(q,F)
−−−−→ [qe]

generate SQL

−−−−−−−−−−→
+ inject PC

[sql]
run queries

−−−−−−−→ [table]
build table

−−−−−−−→ table

Example 6.2.3. Employing the NBF(i) or UBF(i) approaches to the query

q1 results in the following SQL queries. For configuration {V4} (indicated by

the feature express ¬V3 ∧ V4 ∧ ¬V5) we have the query:
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SELECT empno,

name,

CONCAT( ’(’, t0.prescond, ’)’, ’) AND (’

, ’(NOT v3 AND v4) AND NOT v5’

, ’)’) AS prescond,

FROM v_empbio AS t0

For configuration {V5} (indicated by the feature expression ¬V3 ∧ ¬V4 ∧ V5)

we have the query:

SELECT empno,

firstname,

lastname,

CONCAT( ’(’, t0.prescond, ’)’, ’) AND (’

, ’(NOT v3 AND NOT v4) AND v5’

, ’)’) AS prescond

FROM v_empbio AS t0

UAV attempts to reuse as much of the already existing results as possible. The

generated SQL queries need to be independent from the underlying DBMS that

stores the VDB. Hence, the SQL generator module has a submodule that renders

generated SQL queries for each DBMS engine.

To ensure that these methods are implemented correctly we conducted two

sanity checks:

1. We check that the variation-preserving property at the semantics level holds

for all the methods, that is, we check that configuring the result produced by

a method is the same as running the configured query over the corresponding

configured database.
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2. We check that the results from each pair of methods are equivalent based on

the equivalency relation over variational sets defined in Section 2.4 (specifi-

cally, in Section 2.4).

Our set of queries for both the email VDB and employee VDB passed these

sanity checks.

6.3 Experiments and Discussion

In this section, we compare the performance of VDBMS with regards to the ap-

proaches used to generate SQL queries introduced in Section 6.2. Note that the

main contribution of this thesis is the new functionality that VDBMS adds to tra-

ditional RDBMSs. This contribution at its core provides vocabulary for developers

and database administrators to explore and discuss variational needs. Additionally,

it guarantees consistent encoding of variation in the database and queries as well

as automatically checking the correct variational property in either the database

or the queries. This results in removing the burden of manual manipulation of

data and queries from developers and database administrators.

For our experiments, approaches introduced in Section 6.2 do not filter out

tuples with unsatisfiable presence condition unless specifically mentioned other-

wise. Accounting for filtering such tuples explicitly is indicated by adding (f) to

the approach name. For example, NBF(f) is the Naive Brute Force approach that

filters out tuples with unsatisfiable presence conditions. The variational queries
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used for our experiments are available online2 and they are described in Chapter 5.

The runtime of queries contains all elements of an approach including the query

passing the type system, being explicitly annotated by the variational schema, be-

ing optimized by the variation minimization rules, passed to the SQL generator,

run on the VDB, and finally, generating the final variational table. We run the

experiments on a MacBook Pro with a 2.4 GHz Core i7 processor and 8 GB of 1600

MHz DDR3 RAM. All experiments are run with PostgreSQL 13.3 as the database

engine.

We conduct three main comparison of the approaches over our two use cases.

The first one compares the five approaches with each other (Section 6.3.1). The

second one investigates the effect of the number of (unique) variants on the ap-

proaches (Section 6.3.2). The last one investigates the effect filtering out tuples

with unsatisfiable presence conditions (Section 6.3.3).

6.3.1 Analysis of Different SQL Generators

Figure 6.2 and Figure 6.3 show the runtime for each query for each of the five

approaches introduced in Section 6.2 over the employee and email VDBs, respec-

tively. The queries are labeled at the top of the plots while the approaches are

indicated by different color bars. Figure 6.2 implies that NBF(i) mostly has a bet-

ter runtime than NBF, however, the UBF and UBF(i) approaches do not follow

such a trend for this dataset. Furthermore, NBF(i), UAV, and UBF have close

2All queries are available at: https://zenodo.org/record/4321921.

https://zenodo.org/record/4321921
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Figure 6.2: Comparison of SQL generators NBF, NBF(i), UAV, UBF, and UBF(i)
over the employee VDB

performance to each other but none consistently performs better than the others.

Figure 6.3 also implies that NBF(i) consistently has a better runtime than

NBF, and UBF(i) mostly has a better runtime than UBF for this dataset. While

UAV mostly performs better than NBF(i), it is mainly comparable to UBF(i) for

this dataset. Yet, UAV sometimes generates a non-runnable SQL query, showed by

the striped bars in Figure 6.3. Example 6.3.1 explains this shortcoming in detail.

Based on our experiments, the query construction (from type system to generat-

ing SQL queries) takes similar time between the approaches. Their main difference

comes down to the gross runtime of queries on the VDB and building the varia-

tional table. UAV does not take any time to build a variational table since the
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Figure 6.3: Comparison of SQL generators NBF, NBF(i), UAV, UBF, and UBF(i)
over the email VDB

result already has the desired schema and presence conditions, however, it spends

more time on running the SQL query since queries generated by UAV are usually

more complicated. On the other hand, although NBF and UBF run multiple SQL

queries per variational query their generated SQL queries are simpler than the ones

generated by UAV. However, as opposed to UAV they have to adjust the returned

table for each SQL query and apply the correct presence condition to the tuples.

Finally, the main difference between the performance of NBF and NBF(i) (and

similarly, UBF and UBF(i)) is where they apply the correct presence condition to

the tuples. While NBF(i) and UBF(i) pass this task to the underlying database

engine (which seems to perform better) the NBF and UBF approaches do this task
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in the Haskell layer. Note that all four of these approaches still have to fix the

schema of the returned tables to the variational table schema of the variational

query.

Example 6.3.1. In this example we explain why the SQL query generated by

the UAV approach sometimes cannot be run. PostgreSQL forces the type of an

attribute a that is projected as NULL (that is, NULL as a) to be a string. Thus,

using the union operation between subqueries when a has a different type causes

an error. Assume the following query is generated by the UAV approach:

(SELECT body,

NULL AS is_encrypted

FROM messages)

UNION ALL

(SELECT body,

is_encrypted

FROM messages)

PostgreSQL forces is encrypted to have the type string while in the second sub-

query it assumes the boolean type for is encrypted since that is its defined type in

the database. This causes a conflict in the assumption that subqueries of a query

that uses the union operation must have the same schema and their attributes

must have the same type. This issue can potentially be addressed by forcing the

first subquery of the union to have all attributes projected and limit the number

of returned tuples to zero. This would force the type of attributes as they are in

the schema and since it does not return any tuples it will not change the result.

Section 6.3.2 sheds light on the impact of number of (unique) variants on each
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approach and Section 6.3.3 explores the effect of the number of returned tuples on

our approaches.

6.3.2 The Effect of Number of Variants on SQL Generators

In this section, we explore the effect of number of variants and uniquer variants

of a variational query on its runtime in all approaches. Figure 6.4 illustrates the

impact of the number of unique variants of variational queries in both the employee

and email VDB. The categorical boxes on top and left side of the plots indicate

the number of unique variants and the number/name of queries, respectively. Fig-

ure 6.4a does not provide much insight since the approaches all scale linearly with

the number of unique. However, Figure 6.4b suggests an ordering of the approaches

by their performance behavior, as NBF ≤ NBF (i) ≤ UBF ≤ UAV ≤ UBF (i)

for most queries of this dataset. Thus, the UAV and UBF(i) approaches seem to

have a better performance as the number of uniquer variants increases.

We now explore the effect of the number of unique variants of queries compared

to the number of variants. This difference would only affect the performance of two

groups of approaches: 1) NBF vs. UBF and 2) NBF(i) vs. UBF(i). Remember

that while NBF and NBF(i) naively process all variants of a variational query

UBF and UBF(i) only process unique variants of a variational query. That is,

the latter approaches do not unnecessarily repeat a query. This would not make

much difference for empty queries, however, we hypothesize that it significantly

affects the performance of NBF and NBF(i) for non-empty queries. We explore
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(a) The employee VDB.

(b) The email VDB.

Figure 6.4: The performance of SQL generators as the number of unique variants of
queries increases. The categorical boxes on the top of the plot show the number of
unique variants for each query and the categorical boxes on the right demonstrate
the query numbers/names. Note that the striped bars indicate a N/A value due
to the limitation of the UAV approach explained in Section 6.3.1.
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(a) Comparison of the NBF and UBF ap-
proaches.

(b) Comparison of the NBF(i) and UBF(i)
approaches.

(c) Comparison of the NBF(f) and UBF(f)
approaches.

(d) Comparison of the NBF(i)(f) and
UBF(i)(f) approaches.

Figure 6.5: The effect of the difference of the number of variants and number of
unique variants on the employee VDB. The categorical boxes on top and the left
side of the plots illustrate the number of variants minus the number of unique
variants and the number of queries, respectively.

this hypothesis by the plots shown in Figure 6.5 and Figure 6.6. In these plots,

the categorical boxes on top and the left side of the plots indicate the number of

variants minus the number of unique variants and the number/name of queries,

respectively. Unfortunately, Figure 6.5 does not provide us with much insight. We
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explore why this is the case in Section 6.3.3. However, Figure 6.6 confirms our

hypothesis that as the number of differences between the number of variants and

unique variants increases, the performance of NBF and NBF(i) decreases compared

to UBF and UBF(i). This is due to repeatedly running an SQL query in addition

to the cost of building the variational table for more relational tables. Notice that

Figure 6.6 does not contain plots comparing approaches that filter out tuples with

unsatisfiable presence conditions whereas Figure 6.5 does. We also explain the lack

of these plots in Section 6.3.3.

6.3.3 The Effect of Filtering Invalid Tuples

In this section, we explore the effect of filtering out invalid tuples, that is, tuples

with an unsatisfiable presence condition. Figure 6.7 and Figure 6.8 illustrate that

filtering out invalid tuples increases the runtime of queries significantly. This in-

crease is very significant for the UBF, UBF(i), and UAV approaches compared

to NBF and NBF(i)3 since the former approaches check the satisfiability of tu-

ples’ presence conditions while the latter applies the configuration to a tuple’s

presence condition and if it returns false the tuple is dropped. Thus, the calls to

the SAT solver are more expensive than applying the configuration. Furthermore,

Figure 6.7b, Figure 6.7d, Figure 6.8b, and Figure 6.8d illustrate that increasing

the number of returned tuples reduces the performance of the NBF and NBF(i)

approaches. A possible solution would be to either use an incremental SAT solver

3In our experiments these approaches took longer than 30 minutes for all queries from both
datasets except for the ones showed in Figure 6.5c.
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(a) Comparison of the NBF and UBF ap-
proaches.

(b) Comparison of the NBF(i) and UBF(i)
approaches.

Figure 6.6: The effect of the difference of the number of variants and number of
unique variants on the email VDB. The categorical boxes on top and the left side
of the plots indicate the number of variants minus the number of unique variants
and the number/name of queries, respectively.

since most of the SAT problems have lots of common parts or to cluster the tuples

based on their presence conditions and send unique presence conditions to the SAT
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solver.

Finally, we explore the performance of approaches that filter out invalid tuples.

As shown in Figure 6.9, there is not a clear ranking of the performance of the

approaches that filter out invalid tuples and there is also not a clear connection

as the number of tuples increases. This is due to the fact that the complexity of

presence conditions also plays a role in the runtime of these approaches.
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(a) The NBF(i) approach versus NBF(i)(f). (b) The NBF(i) approach versus NBF(i)(f)
as the number of returned tuples increases.

(c) The NBF approach versus NBF(f). (d) The NBF approach versus NBF(f) as the
number of returned tuples increases.

Figure 6.7: The effect of filtering out tuples with unsatisfiable presence conditions
on SQL generator approaches over the email VDB.
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(a) The NBF(i) approach versus NBF(i)(f). (b) The NBF(i) approach versus NBF(i)(f)
as the number of returned tuples increases.

(c) The NBF approach versus NBF(f). (d) The NBF approach versus NBF(f) as the
number of returned tuples increases.

Figure 6.8: The effect of filtering out tuples with unsatisfiable presence conditions
on SQL generator approaches over the employee VDB.
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(a) Comparison of the NBF(f) and
NBF(i)(f) approaches on the employee
VDB.

(b) Comparison of the NBF(f) and
NBF(i)(f) approaches on the employee
VDB.

(c) Comparison of the UBF(f) and
UBF(i)(f) approaches on the employee
VDB

(d) Comparison of the UBF(f) and
UBF(i)(f) approaches on the employee
VDB

(e) Comparison of the NBF(f) and
NBF(i)(f) approaches on the email VDB

(f) Comparison of the NBF(f) and NBF(i)(f)
approaches on the email VDB

Figure 6.9: The effect of filtering out tuples with unsatisfiable presence conditions
when presence conditions are injected into a query in on SQL generator approaches.
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Chapter 7 Related Work

We have succeeded in providing a variational database framework and system by

introducing a variation space for a database and explicitly accounting for variation

in the database and the query language while relying on traditional non-variational

RDBMSs. To the best of our knowledge, VDB and VDBMS are the first database

framework and system that provide a generic solution to the problem of variation

in databases. However, lots of work has proposed frameworks and tools to address

specific kinds of variation. In this chapter, we study some of these tools and situate

the variational database framework in the larger research context. In Section 7.1,

we discuss multiple tools that address different kinds of variation in databases. In

Section 7.2, we discuss tools that address the rise of variation in databases as a

direct consequent of software development. Finally, in Section 7.3, we discuss some

of the work on variational research.

7.1 Instances of Variation in Databases

Database researchers have studied several kinds of variation in both time and

space. There is a substantial body of work on schema evolution and database

migration [26, 56, 39, 61], which corresponds to variation in time. Typically the

goal of such work is to safely migrate existing databases forward to new versions of
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the schema as it evolves. Work on database versioning [18, 40] extends this idea to

a database’s content. In a versioned database, content changes can be sent between

different instances of a database, similar to a distributed revision control system.

All of this work is different from variational databases because it encodes a less

general notion of variation and does not support querying multiple versions of the

database at once. Work on data integration can be viewed as managing variation in

space [28]. In data integration, the goal is to combine data from disparate sources

and provide a unified interface for querying. This is different from VDBs, which

make differences between variants explicit.

The definition of variation is very limited in these problems. Such limitation

allows for an efficient intelligent solutions, however, it tailors their solutions to a

specific context and prevents one from using the same solution/system in a similar

context when variation in time or space appears in a database [62]. For example,

one cannot use a data integration system to manage variation in a database used

in software produced by a SPL.

7.1.1 Schema Evolution

Current solutions addressing schema evolution rely on temporal nature of schema

evolution. They use timestamps as a means to keep track of historical changes

either in an external document [56] or as versions attached to databases [53, 19,

9, 67], i.e., either approaches fail to incorporate the timestamps into the database.

Then, they take one of these approaches: 1) they require the DBA to design a
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unified schema, map all schema variants to the unified one, migrate the database

variants to the unified schema, and write queries only on the unified schema [39],

2) they require the DBA to specify the version for their query and then migrating

all database variants to the queried version [53, 19, 9, 67], or 3) they require the

user to specify the timestamps for their query and then reformulate the query for

other database variants [56].

These approaches usually do not grant users access to old variants of data even

if they desire so and it is messy to keep both different copies of a variant, one with

the old schema and one with the unified schema, since every data addition/update

now requires to be applied to all copies of the database variant. A better solution is

maintaining a history of the changes applied to the database and the unified schema

as an XML document and providing a language that allows users/developers to

choose the variant they desire [56]. Unfortunately, this is achieved by limiting

the schema evolution to temporal changes, offering a beautifully tailored approach

for temporal changes, however, resulting in a non-extensible approach for non-

temporal changes.

Temporal evolution is tracked by requiring the database to always have a time-

related attribute in tables. Thus, queries have to specify the time frame for which

they are inquiring information [56]. Now the user can choose a wide enough time

frame in their queries to access to their desired variant(s). Aside from the detailed

mapping of time frames and variants, this approach requires a query to have one

and only one information need, no matter how many variants it is aiming. That

is, if a time frame includes assumingely two variants a user cannot write a query
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that extract two separate information needs for each of them accumulatively in one

query. Even worse, if this query does not conform to one of the variant’s schema

but it conforms to the other one, the query still fails since there is no systematic

way to identify that the query is ill (does not conform to the schema) for one of the

variants. These limitations and constraint are the result of ignoring that temporal

changes to a database is a form of variability.

7.1.2 Database Integration

The need for data integration systems was raised by the invention of the Internet

and the World Wide Web which require quick access to lots of data stored online

as well as the ability to query all of them. These systems need to query disparate

data sources which often have different formats (e.g., some are completely struc-

tured data while others are either semi-structured or unstructured) and have been

developed independently of each other [28]. Thus, work on data integration can

be viewed as managing database variation in space at the content, schema, and

format level. Most of these systems fall somewhere on the spectrum of warehous-

ing and virtual integration. In the warehousing model, data from each source are

loaded and materialized in a physical database called a warehouse whereas in the

virtual integration model, the data remain in each data source and are accessed

as needed at query time. The VDB framework falls in the middle of the spectrum

since all database variants (data sources) are stored in a physical database without

materialization.
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In database integration systems, a mediated schema is defined for the integrated

data and each data source has a wrapper/extractor that adjusts the schema and

data of the source to the mediated schema. This is done by using schema matching

and mapping approaches [60, 27, 16]. Our variational database framework skips

this step since the variational schema contains within itself the variational encod-

ing of the variants which is similar to the role of wrapper/extractor in database

integration systems.

Finally, queries are posed in terms of relations in the mediated schema. Then,

the database integration system reformulates and optimizes the query to grab

parts of the data requested by the query from the corresponding data sources

since all data sources do not necessarily contain the requested information in the

query. Similarly, our SQL generators reformulate a variational query to extract

data from corresponding variants. However, variational queries allow one to select

the database variants (or parts of it) that they want to query whereas queries

in a database integration system do not provide such an option. Furthermore,

unlike VDBs, database integration systems are not variation-preserving, that is,

the result has no indication as to the belonging of part of data to a specific variant

(data source).

7.1.3 Temporal Databases and Database Versioning

There is a rich body of work on temporal databases which consider both the

data model and the query language [44, 59, 71]. These databases manage data
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that are temporal in nature, that is, the state of the data at a specific time is

important, such as financial and medical data or record-keeping applications. Some

of these databases use traditional relational databases and extend them to meet

their needs [74, 4, 63], while others adopt an in-database approach [47]. These

databases contain attributes indicating the start and end time, indicating either

the transaction time or the valid time of the data. Temporal query languages

usually extend traditional query languages by adding timestamps and conditions

over timestamps [25, 43, 54]. Temporal databases only have variation at their

content level, however, their model are more expressive in representing temporal

variation at the content level. Yet, their model does not represent the temporal

variation at the schema level. Similar to VRA, their query languages can express

the desired time frame for extracting data and additionally, their query languages

can express interval related queries.

Temporal databases support a linear timeline for a database, however, the

rise of collaborative data science has led to non-linear time-based changes in a

database. This resulted in work on database versioning that aims to support

curating and analyzing data collaboratively [17]. Inspired by software version

control systems such as Git, Huang et al. [40] introduce OrpheusDB which stores

metadata information about the version graph such as the version number, its

parent(s), checkout time, commit time, comments, etc. Using this metadata the

shared parts of the database can be broken down at different scales so that the

database for each version can be recreated. For example, each version could have

a table of its own or tuples could have a version attribute and so on. OrpheusDB
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supports both git-style version control commands and SQL-like queries. Its query

language VQL can query the data as well as the data and their versions. VQL

supports a subset of the query language for versioning and provenance proposed

by Chavan et al. [21]. Bhattacherjee et al. [18] studies the trade-off of storage and

recreation cost for different compression and optimization methods used to recreate

a database version. Similar to temporal databases, database versioning systems

also only contain variation at the content level. However, their query languages

can express git-style commands whereas VRA cannot.

7.2 Database Variation Resulted from Software Development

A database may contain variation due to business requirements of software and its

evolution [68, 38]. While some of schema evolution and database migration can

be used to address this kind of database variation, other workarounds have been

proposed as well. The first is that a different relational database may be specified

and created per-variant, according to the information needs of each variant [57].

This approach is labor-intensive and difficult to maintain since changes need to

be propagated across variants manually. The second strategy is to define a single

global schema that applies to all variants [15]. This strategy is more efficient to

maintain compared to the previous approach but is still hard to maintain, especially

in face of SPL evolution. Due to lack of separation of concerns and suboptimal

traceability of requirements to database elements [66] it is also complex, hard to

understand, and unscalable [64]. Additionally, it suffers from design limitation
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and error-proneness since parts of the schema will be irrelevant to each variant,

resulting in losing database’s integrity constraints [64]. The third strategy is to

define a variable data model [66, 64, 2] which models a database schema (usually

as an Entity-Relation model) with annotations of features from SPL to indicate

their variable existence. Section 7.2.1 explains these approaches in more details.

7.2.1 Data Model Variability in Software Product Line

In this section, we focus on managing database variation in software product lines.

The SPL community has a tradition of developing and distributing use cases to

support research on software variation. For example, SPL2go [72] catalogs the

source code and variability models of a large number of SPLs. Additionally, specific

projects, such as Apel et al.’s [8] work on SPL verification, often distribute use cases

along with study results. However, there are no existing datasets or use cases that

include corresponding relational databases and queries, despite their ubiquity in

modern software. Our use cases are the first resource that provide such datasets.

Many researchers have recognized the need to manage structural variation in

the databases that SPLs rely on. Abo Zaid and De Troyer [2] argue for modeling

data variability as part of a model-oriented SPL process. Their variable data

models link features to concepts in a data model so that specialized data models

can be generated for different products. Khedri and Khosravi [49] address data

model variability in the context of delta-oriented programming. They define delta

modules that can incrementally generate a relational database schema, and so can
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be used to generate different schemas for each variant of a SPL. Humblet et al. [42]

present a tool to manage variation in the schema of a relational database used by a

SPL. Their tool enables linking features to elements of a schema, then generating

different variants of the schema for different products. Schäler et al. [64] generate a

variable database schema from a given global schema and software configurations

by mapping schema element to features. Siegmund et al. [66] emphasize the need

for variable database schema in SPLs and propose two decomposition approaches:

(1) physical where database sub-schemas associated with a feature are stored in

physical files and (2) virtual where a global entity-relation model of a schema is

annotated with features. All of these approaches address the issue of structural

database variation in SPLs and provide a way to derive a schema per variant,

which is also achievable by configuring a VDB. The work of Humblet et al. [42]

is most similar to our notion of a variational schema since it is an annotative

approach [46] that directly associates schema elements with features. Abo Zaid and

De Troyer [2] is also annotative, but operates at the higher level of a data model

that may only later be realized as a relational database. Khedri and Khosravi

[49] is a compositional approach [46] to generating database schemas. None of

these approaches consider content-level variation, which is captured by VDBs and

observable in our use cases, nor do they consider how to express queries over

databases with structural variation, which is addressed by our variational queries.

While the previous approaches all address data variation in space, Herrmann

et al. [38] emphasize that as an SPL evolves over time, so does its database. Their

approach adapts work on database evolution to SPLs, enabling the safe evolution
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of all deployed products. They present the DAVE toolkit to address database

evolution in SPL. Their approach generates a global evolution script from the local

evolution scripts by grouping them into a single database operations and executing

them sequentially. This approach requires having the old and new schema of a

variant to generate the delta scripts. However, it uses these scripts to ensure

correct evolution of both data and schema at the deployment step.

7.3 Variational Research

In this section, we discuss some of the related variational research and other ap-

plications of it. The representation of variational schemas and variational tables

is based on previous work on variational sets [31], which is part of a larger ef-

fort toward developing safe and efficient variational data structures [77, 55]. The

representation of variation in variational queries is based on formula choice calcu-

lus [75, 41]. The central motivation of work on variational data structures is that

many applications can benefit from maintaining and computing with variation at

runtime [30, 24]. Implementing SPL analyses are an example of such an appli-

cation, but there are many more [77].The ability to maintain and query several

variants of a database at once extends the idea of computing with variation to

relational databases.

VDBMS is not the only system that extends an existing system with varia-

tion. Grasley [36] expands on interpreters for variational imperative languages by

providing a formal operational semantics for the variational imperative language
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VIMP. Alkubaish [5] investigates the use of algebraic effects to resolve the con-

flict between variation and side effects. Young et al. [78] add variation to SAT

solvers and argue that the variational SAT solver automates the interaction with

the incremental solver.
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Chapter 8 Conclusion

This thesis has presented the variational database framework as a generic solution

to encoding multiple variants of a database collectively in one place for any kind

of variation appearing in databases. The VDB framework is intended to system-

atically ensure that the variation in data and queries are encoded correctly and

consistently. Thus, removing the burden of manual workarounds from database

administrators and developers. If successful, it can improve the state of variation

in databases research by providing a configurable database system for any kind of

variation in databases. Thus, instead of developing a new database system each

time a new kind of variation in databases arises, one can adjust and configure

VDBMS to their need.

Section 8.1 briefly reviews the most important contributions of this thesis, and

Section 8.2 provides some immediate directions for future work.

8.1 Summary of Contributions

The main contribution of this thesis is the variational database framework, a

generic database framework that explicitly accounts for variation, and the vari-

ational database management system, a prototype of the VDB framework. We

argued that variation is an orthogonal concern to databases and while there are
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approaches that address it in specific contexts, there is no fundamental technique

to address it in every contexts, especially in intersection of contexts. Hence, we in-

corporated variation as propositional formulas (Section 2.3) into the database while

keeping track of variation while querying the database by employing approaches

such as annotation, variational sets, and formula choice calculus, introduced in

Section 2.4 and Section 2.5, respectively.

In essence, VDB systematically places multiple relational database variants in

a single database while tracking their corresponding configurations at both the

content and structure levels of a database (Chapter 3). This is a source of com-

plexity that may impact understandability, as can be observed in our use cases

introduced in Chapter 5. However, it also has several advantages: it is generic, in

the sense that any set of database variants and queries can be encoded as a VDB

and variational queries. Additionally, it enables direct association of variation in

a database to variation in other parts interacting with the database such as soft-

ware. We discussed that explicitly encoding variation in databases allows tracing

variation between the program and data. It also empowers developers to check

properties over a database to ensure that their desired constraints over a database

hold (Section 3.3).

We also defined a variational query language (VRA) to extract information from

VDBs (Section 4.1) along with its denotational semantics in terms of the relational

algebra semantics (Section 4.4.3). VRA uses variational sets and formula choice

calculus to incorporate variation into the relational algebra. Although explicitly

accounting for variation in queries introduces more complexity in the language it
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provides a systematic mechanism to ensure that the query follows the variation

encoded in the database as well as possibly imposing new variation (Section 4.2).

Still, this complexity is alleviated in two ways: 1) the queries are not enforced to

repeat the variation encoded in the database, since queries can automatically be

explicitly annotated by schemas (Section 4.3), and 2) the variation in queries are

confluent, that is, the variation can move from one part of the query to another

without changing its semantics due to syntactic equivalence rules (Section 4.5).

Importantly, VRA is variation-preserving both at the type and semantics level

(Section 4.6.2 and Section 4.6.3). That is, the corresponding variants of data is

tracked throughout the execution of the query.

We provided two use cases that illustrate how software variation leads to cor-

responding variation in relational databases (Chapter 5). These use cases demon-

strate the feasibility of VDBs and variational queries to capture the data needs of

variational software systems. We argued that effectively managing such variation

is an open problem, and we believe that these use cases will form a useful basis

for evaluating research that addresses it, such as our own VDBMS prototype. The

case studies were developed by systematically combining existing data sources with

software variation scenarios described in the literature. They each consist of a vari-

ational schema describing the structural variation of the database, the variational

database itself containing the variational content, and a set of variational queries

that satisfy realistic information needs over multiple variants of each database.

These case studies can be used to 1) evaluate approaches and systems attempting

to manage any kind of variation in databases, 2) learn how a variational database
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can be generated from a scenario that describes such variation, and 3) design a

system that automatically generates a variational database from non-variational

databases and their corresponding variant. In particular, we used these use cases

to evaluate VDBMS (Section 6.3).

Finally, we implemented the VDB framework and VRA query language as a

variational database management system and compared different approaches of

running a variational query on an underlying relational database engine (Chap-

ter 6). Our experiments demonstrated that our different SQL generator approaches

are comparable while filtering out tuples with unsatisfiable presence conditions

takes a significantly long time, especially as the number of returned tuples grows.

8.2 Future Work

Since the long-term vision of this thesis is to support all kinds of variation in

databases, we can imagine many applications of VDB and VDBMS. A measure of

the success of this work will be if other researchers either use and configure VDBMS

or pursue ideas in VDB to develop a new variation-aware database framework

for different kinds of variation in databases, especially for new kinds of variation

appearing in databases. However, in this section, we discuss a few immediate

extensions and improvements to our VDB framework and its prototype that we

plan on pursuing.

As described in Section 2.3, the VDB framework assumes a closed-world vari-

ation and configuration space, that is, the sets of features and configurations are
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closed. An immediate improvement is having an open-world configuration space

and then, an open-world feature space. This would be a great improvement since

it makes adding new database variants and consequently, generating a VDB easier,

resulting in a more accessible framework.

As described in Chapter 6, we implement presence conditions as strings, which

is inefficient because we need to manipulate every tuple’s presence condition while

running a query and then, parsing it to a feature expression encoding to build

the final returning variational table. We plan to implement presence conditions

as a user-defined data type inside the underlying DBMS engine, which limits the

underlying engines that VDBMS can rely on. Doing so would also require us to

define user-defined functions over feature expressions inside the database engine to

allow manipulation of them by VDBMS. Additionally, the performance of VDBMS

can be improved by different optimizations, such as clustering returned tuples

based on their presence condition to reduce the time it takes to filter out the

tuples with unsatisfiable presence conditions.

Furthermore, to make VDBMS more accessible and configurable to each kind

of variation in databases we can generalize parts of it. For instance, we plan

to generalize the representation of feature expression such that its encoding and

functions can be defined by an expert of the specific kind of variation. This would

allow for context-specific optimizations with regards to the application domain of

the kind of variation in databases.

Additionally, we plan to make VDBMS more useable by having a visual inter-

face that shows a snapshot of the database as the user writes their query. This
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would help the user understand the variation context of their query better since

as the user writes their query they can see what parts of the database is accessible

at the current variation context, instead of waiting until the query is completely

written to see if it passes the type checker. This improvement requires a type

system that allows for holes in queries. This can become richer by designing an

error-tolerant type system that pinpoints where the user made a mistake in their

query and allows the part of query that is well-typed to run. This is especially

beneficial when a query has lots of encoded variation within it.

Finally, although we have not implemented a system to generate a VDB for

a variational scenario it is trivial to do so if we have the variant databases. The

problem is that, in most cases, the variant databases do not exist since current

variational scenarios only simulate the effect of variation and do not incorporate it

directly into the database or queries. Thus, an expert needs to manually generate

the database variants. We plan to explore the possibilities of generating a VDB

without having all database variants. This intertwines with moving from closed-

world variation and configuration space to open-world. Another way to go about

this would be to extend the query language such that not only it extracts data

from a VDB but it also defines and manipulates data. The language can be further

extended by allowing variation to be incorporated in the database constraints.
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[33] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. Do
Background Colors Improve Program Comprehension in the #ifdef Hell? Em-
pirical Software Engineering, 18(4):699–745, 2013.

[34] Gabriel Ferreira, Momin Malik, Christian Kästner, Juergen Pfeffer, and Sven
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