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Abstract Incremental satis�ability (SAT) solving is an extension of classic
SAT solving that enables solving a set of related SAT problems by identifying
and exploiting shared terms. However, using incremental solvers e�ectively is
hard since performance is sensitive to the input order of subterms and re-
sults must be tracked manually. For analyses that generate sets of related
SAT problems, such as those in software product lines, incremental solvers
are either not used or their use is not clearly described in the literature. This
paper translates the ordering problem to an encoding problem and automates
the use of incremental solving. We introduce variational SAT solving, which
di�ers from incremental solving by accepting all related problems as a single
variational input and returning all results as a single variational output. Vari-
ational solving syntactically encodes di�erences in related SAT problems as
local points of variation. With this syntax, our approach automates the in-
teraction with the incremental solver and enables a method to automatically
optimize sharing in the input. To evaluate these ideas, we formalize a varia-
tional SAT algorithm, construct a prototype variational solver, and perform an
empirical analysis on two real-world datasets that applied incremental solvers
to software evolution scenarios. We show, assuming a variational input, that
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the prototype solver scales better for these problems than four o�-the-shelf
incremental solvers while also automatically tracking individual results.

Keywords satis�ability solving · variation · choice calculus · software
product lines

1 Introduction

Satis�ability (SAT) solving is a ubiquitous technology in software product lines
for a diverse set of analyses ranging from anomaly detection (Mauro et al.,
2017; Kowal et al., 2016; Ananieva et al., 2016), dead code analysis (Tartler
et al., 2011), sampling (Medeiros et al., 2016; Varshosaz et al., 2018), and
automated analysis of feature models (Benavides et al., 2005; Thüm et al.,
2014; Galindo et al., 2019). The general pattern is to represent parts of the
system or feature model as a propositional formula (Batory, 2005; Czarnecki
and W¡sowski, 2007; Mendonça et al., 2008), and reduce the analysis to a
SAT problem. However, modern software is constantly evolving and thus the
translation step to a single SAT problem quickly becomes a translation to a
set of SAT problems.

Sets of SAT problems frequently arise, for example, when analyzing changes
to feature models over time. Consider a feature model FM i for some product
version i, represented as a conjunction of clauses that describe the relationships
among features: FM i = c0 ∧ c1 ∧ . . . ∧ cn. Now consider a case where several
properties must be guaranteed for every commit via a continuous integration
tool (e.g., via a void feature model analysis or dead feature analysis). One
might add new clauses, remove clauses, or alter clauses depending on the
property. For example:

SATFM i_void = c0 ∧ c1 ∧ c2 ∧ c3 ∧ . . . ∧ cn

SATFM i_dead = (c0 ∧ c1 ∧ c2 ∧ c3 ∧ . . . ∧ cn) ∧ ¬core_feature

...

SATFM i+n_dead = (c′0 ∧ c1 ∧ c2 ∧ c3 ∧ . . . ∧ c′n) ∧ ¬other_core_feature

Where a tick mark ′, indicates clauses which have been altered from version
FMi . Or consider a case where one might perform a single analysis over several
versions or commits yielding a set of SAT problems

SATFM i
= (c0 ∧ c1 ∧ c2 ∧ c3 ∧ . . . ∧ cn) ∧ dead_feature

SATFM i+1
= (c0 ∧ c′1 ∧ c2 ∧ c′3 ∧ . . . ∧ cn) ∧ dead_feature

...

SATFM i+n = (c′0 ∧ c′1 ∧ c2 ∧ c′′3 ∧ . . . ∧ c′n) ∧ dead_feature

Where a double tick mark, ′′, indicates a clause that has been altered more than
once from version FM i. In such cases, state-of-the-art methods do not make
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use of commonalities among the set of formulas and perform many redundant
computations.

A concrete example of the above scenario naturally occurred in the Linux
Foundation's response to the meltdown and spectre security vulnerabilities
(Kocher et al., 2019; Lipp et al., 2018). The response resulted in three kinds
of Linux kernel versions and three corresponding feature models: a model
that does not support exploit prevention features, a version that supports
several exploit prevention features but not a single, global toggle, and a version
that aggregates all prevention features to a single feature. The di�erent kernel
versions were used throughout the software industry, and many companies,
such as cloud service providers, employed products that simultaneously used
each version. Hence any SAT-based analysis on such products leads to a set of
SAT problems, where each problem represents veri�cation of some property of
the feature model, or the same analysis over many versions of a feature model.

In these cases, analysis over the set of SAT problems produced by the
kernel changes leads to a dilemma. We must either perform the analysis on
each SAT problem, and thus feature model, individually, therefore not making
any use of previously known commonalities. Or we might try to reuse results
from previous SAT calls by running the analysis on the feature model with no
prevention features, and apply the results to feature models that have some
prevention features. However, such a plan is spurious; changes between kernel
versions could have introduced signi�cant cross-tree constraints that would not
be captured by reuse, and reusing results would require domain knowledge and
a high degree of manual e�ort.

An alternative is to use an incremental solver, which allows the user to
hand-write a program to consider shared terms only once, then direct the solver
to solutions, one for each feature model, in the search space. Theoretically,
this is more e�cient because it reuses knowledge of shared terms, however,
using an incremental solver in this way requires substantial manual e�ort and
domain knowledge, produces a speci�c solution to a speci�c analysis, and it
requires extra infrastructure to manage results. Hence, we are left with either
an ine�cient analysis full of redundancies, or with an e�cient analysis that
requires a high degree of manual e�ort and domain knowledge.

Many analyses and tools have been developed to deal with code-level vari-
ability in software, which make use of incremental solvers to solve lots of related
SAT problems, as described above. For example, Kästner et al. (2011) con-
structed a variation-aware parser (Kästner et al., 2011), lexer (Kästner et al.,
2011), and type checker (Kästner et al., 2012; Liebig et al., 2013) to type check
all possible con�gurations of the Linux kernel. Additionally, Meinicke (2014,
2019) constructed a variation-aware bytecode, which supports debugging soft-
ware product lines, performing mutation analysis, and automated program re-
pair Wong (2021). Finally, Ataei et al. (2021a) created a variational database
management system and query language that enables working with variation
in the structure or content of data arising for a wide variety of reasons, such
as due to schema evolution, data integration, or integration with a software
product line Ataei et al. (2018). Each of these systems must e�ciently reason
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about sets of related domain artifacts encoded as SAT problems. Incremental
solvers �ll this need, but again, require signi�cant e�ort and domain knowledge
to use e�ectively.

In this paper, we show that the performance bene�t of using an incremental
solver to solve a large number of related SAT problems can be achieved while
mitigating the main drawbacks of incremental solvers, that is, high manual
e�ort and deep integration with the application. Our solution is to formalize
a method of variational SAT solving that makes use of known commonalities
among propositional formulas and automates the interaction with an incremen-
tal solver. Variational SAT solving takes as input a single variational formula,
which encodes a set of related SAT problems to solve. It then compiles this
variational formula into an e�cient program to run on an incremental solver.
Finally, it collects the results from the incremental solver into a single result
that captures the solutions to all of the SAT problems described by the input
variational formula. We call the input formula a variational formula since it
e�ciently encodes many formulas in one by di�erentiating parts of the formula
that are shared among many formulas, and thus that vary among some of the
formulas. A variational SAT solver then solves variational formulas.

Our approach has several bene�ts: (1) End-users are only required to pro-
vide a single variational formula, which represents a set of related proposi-
tional formulas, rather than a formula and a hand-written program to direct
the solver. (2) It is general; while variational satis�ability solving is applied to
feature model analyses in this work, it can be used for any analysis that can
be encoded as a variational formula, which can be constructed from any set of
related SAT problems. (3) With a variational formula, new kinds of syntactic
manipulations and optimizations, such as factoring out shared terms, become
possible and can be automated. (4) A variational model may be produced that
encapsulates a set of satisfying assignments for all variants of the variational
formula, alleviating the need to track the incremental solver's results when
satisfying assigments are needed.

We describe the process of variational SAT solving and the construction
of variational models in Section 4, and construct a prototype solver based on
these ideas. We evaluate performance with a variational void analysis, and
demonstrate a variational dead and core feature analysis.

We perform these analyses on two variational formulas, which represent
four and ten versions of two real-world software artifacts' feature models. For
this work, we focus only on variational SAT solving and assume a variational
formula as input, leaving other considerations such as the optimal encoding of
such formulas to future work. To summarize, we make the following contribu-
tions:

� We give the syntax and semantics of an extension to propositional logic
that reasons about variation. (Section 3)

� We design and implement variational models. (Section 4.1)
� We present and formalize an algorithm that solves formulas in the extended
logic using o�-the-shelf incremental solvers as black boxes.
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� We construct, evaluate, and compare a prototype variational satis�ability
solver, on two real-world datasets, to four incremental satis�ability solvers.
The prototype variational satis�ability solver is publicly available.1 (Sec-
tion 4.2)

� We report reduced execution times for the prototype solver compared to all
tested incremental solvers when solving many variants. All analysis scripts
and data are publicly available.2(Section 5.2)

This work builds on the conference version (Young et al., 2020) of this
paper in two ways. First, we present the inference rules that formalize the be-
havior of a variational SAT solver. Second, we repeat the conference version's
experiment with three more incremental solvers. The conference paper evalu-
ation used only the Z3 (de Moura and Bjørner, 2008) solver as the variational
solver's backend, which we highlighted as a threat to validity. In this version,
we address that threat by repeating our analysis with CVC4 (Barrett et al.,
2011), Boolector (Brummayer and Biere, 2009), and Yices (Dutertre, 2014).

2 Background

Variational SAT solving depends on incremental SAT/SMT solving. In this
section, we describe the underlying data structures and operations that varia-
tional SAT solving exploits, using the Linux Kernel as a running example. Our
description, and the interface between variational SAT solving and incremental
SAT/SMT conforms to the SMTLIB2 (Barrett et al., 2016) standard.

After the discovery of the meltdown and spectre security vulnerabilities,
there were multiple versions of the Linux kernel that dealt with these vul-
nerabilities (or not) in di�erent ways. Suppose, for example, we have kernel
versions L0, L1, and L2 with corresponding feature models FM 0, FM 1, and
FM 2. FM 0 contains no spectre/meltdown-related features; FM 1 contains a set
of new features named spectre_v2 , nospec_store_bypass_disable, l1tf , and
pti ; and FM 2 contains a single feature mitigations that combines all of the
exploit prevention features from FM 1.3

We introduce some notation to track particular features and propositional
formulas across multiple feature models. For features, we use fi.j to refer to the
ith feature that originated in the j th feature model. For formulas, we use ci.j to
refer to the formula that originated in the j th feature model and that encodes
the ith feature's relationships to other features. Thus, the feature models can

1 https://doi.org/10.5281/zenodo.5543884
2 https://doi.org/10.5281/zenodo.5546009
3 The feature names are from the Linux kernel, see Larabel (2020).

https://doi.org/10.5281/zenodo.5543884
https://doi.org/10.5281/zenodo.5546009
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SAT

SAT

SATFM 2

FM 1

FM 0

resultFM1

resultFM2

resultFM0

(a) Brute force procedure, no reuse between
solver calls.

SAT

SAT

SAT

FM 0

pop (ci.0)

pop (c0.0)

push pti → ci.0

push (spectre_v2 ∨ l1tf ) ↔
(c0.0 ∧ (nospec . . . → fj.1))

resetAssertionStack

push mitigations ↔
(c0.0 ∧ c1.0 ∧ . . . cn.0)

resultFM1

resultFM2

resultFM0

(b) Incremental procedure, reuse de�ned by pop
and push operations.

Fig. 1: Conceptual di�erence between incremental and brute force SAT pro-
cedures.

be represented by the following formulas:

FM 0 = c0.0 ∧ c1.0 ∧ . . . ∧ cn.0

FM 1 = (spectre_v2 ∨ l1tf ) ↔ (c′0.0 ∧ (nospec_store_bypass-disable

→ fj.1) ∧ c1.0 ∧ (pti → c′i.0) ∧ . . . ∧ cn.0)

FM 2 = mitigations ↔ (c0.0 ∧ c1.0 ∧ . . . ∧ cn.0)

FM 0 is a conjunction of formulas that describe the relationship of features
in L0. In FM 1 we can see exactly how several clauses have been changed.
New features have been introduced, e.g., pti , c0.0 is constrained with a new
conjunction, and there are three new formulas: (pti → ci.0), (spectre_v2 ∨
l1tf ), (nospec_store_bypass-disable → fj.1), two of which a�ect a relationship
or feature from FM 0. In FM 2, the features and constraints introduced in FM 1

are replaced by a single new mitigations feature that is added to an unchanged
copy of FM 0.

Suppose one wants to �nd a satisfying assignment (called a model, not
to be confused with a feature model) for each formula. Using a classic SAT
solver results in the procedure illustrated in Figure 1a, where the SAT solver
is applied to each formula separately; the solver does not recognize informa-
tion shared between the formulas and does not propagate information learned
during the solving procedure to future solving procedures. Alternatively, using
an incremental solver is illustrated in Figure 1b; in this scenario, all of the for-
mulas are solved by a single solver instance where terms are programmatically
added and removed from the solver throughout the process. The ability to add
and remove terms from the solvers is enabled by a data structure within the
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incremental solver called an assertion stack. The assertion stack is a stack of
declarations, de�nitions, or formulas that determine the context of the solver.
A solver context is the union of all global variable de�nitions and everything
on the assertion stack. A program may add an assertion to the stack via the
push operation and remove from the top via a pop operation (Nadel et al.,
2014).

In an e�cient process, one would initially add as many shared terms as
possible, FM 0 in this example. Then request a model, and manipulate the
assertion stack to reach the next problem of interest, FM 1 in this case. No-
tice that to reach the next problem, FM 1, from FM 0, several operations are
required: c0.0 and ci.0 must be removed, c0.0 must be updated, and the new sub-
formulas must be introduced. To reach FM 2 from FM 1 all assertions would
need to be popped to add mitigation, then re-pushed.

3 VPL: Variation + Propositional Logic

In this section, we present the logic of variational satis�ability problems. The
logic is a conservative extension of classic two-valued logic (C2) with a choice

construct from the choice calculus (Erwig and Walkingshaw, 2011; Walking-
shaw, 2013), a formal language for describing variation. We call the new logic
VPL, short for variational propositional logic, and refer to VPL expressions
as variational formulas. This section de�nes the syntax and semantics of VPL
and uses it to encode the example from Section 2.

Syntax. The syntax of variational propositional logic is given in Figure 2a. It
extends the propositional formula notation of C2 with a single new connective
called a choice from the choice calculus. A choice D⟨f1, f2⟩ represents either
f1 or f2 depending on the Boolean value of its dimension D. We call f1 and
f2 the alternatives of the choice. Although dimensions are Boolean variables,
the set of dimensions is disjoint from the set of variables from C2, which may
be referenced in the leaves of a formula. We use lowercase letters to range over
variables and uppercase letters for dimensions.

The syntax of VPL does not include derived logical connectives, such as
→ and ↔. However, such forms can be de�ned from other primitives and are
assumed throughout the paper.

Semantics. Conceptually, a variational formula represents several propositional
logic formulas at once, which can be obtained by resolving all of the choices.
For software product-line researchers, it is useful to think of VPL as analo-
gous to #ifdef-annotated C2, where choices correspond to a disciplined (Liebig
et al., 2011) application of #ifdef annotations. From a logical perspective,
following the many-valued logic of Kleene (Kleene, 1968; Rescher, 1969), the
intuition behind VPL is that a choice is a placeholder for two equally possi-
ble alternatives that is deterministically resolved by reference to an external
environment. In this sense, VPL deviates from other many-valued logics, such
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t ::= r | T | F Variables and Boolean literals

f ::= t Terminal

| ¬f Negate

| f ∨ f Or

| f ∧ f And

| D⟨f, f⟩ Choice

(a) Syntax of VPL.

J·K : f → C → f where C = D → B⊥

JtKC = t

J¬fKC = ¬JfKC
Jf1 ∧ f2KC = Jf1KC ∧ Jf2KC
Jf1 ∨ f2KC = Jf1KC ∨ Jf2KC

JD⟨f1, f2⟩KC =


Jf1KC C(D) = true

Jf2KC C(D) = false

D⟨Jf1KC , Jf2KC⟩ C(D) = ⊥

(b) Con�guration semantics of VPL.

D⟨f, f⟩ ≡ f Idemp

D⟨D⟨f1, f2⟩, f3⟩ ≡ D⟨f1, f3⟩ Dom-L

D⟨f1,D⟨f2, f3⟩⟩ ≡ D⟨f1, f3⟩ Dom-R

D1 ⟨D2 ⟨f1, f2⟩,D2 ⟨f3, f4⟩⟩ ≡ D2 ⟨D1 ⟨f1, f3⟩,D1 ⟨f2, f4⟩⟩ Swap

D⟨¬f1,¬f2⟩ ≡ ¬D⟨f1, f2⟩ Neg

D⟨f1 ∨ f3, f2 ∨ f4⟩ ≡ D⟨f1, f2⟩ ∨D⟨f3, f4⟩ Or

D⟨f1 ∧ f3, f2 ∧ f4⟩ ≡ D⟨f1, f2⟩ ∧D⟨f3, f4⟩ And

D⟨f1 ∧ f2, f1⟩ ≡ f1 ∧D⟨f2, T⟩ And-L

D⟨f1 ∨ f2, f1⟩ ≡ f1 ∨D⟨f2, F⟩ Or-L

D⟨f1, f1 ∧ f2⟩ ≡ f1 ∧D⟨T, f2⟩ And-R

D⟨f1, f1 ∨ f2⟩ ≡ f1 ∨D⟨F, f2⟩ Or-R

(c) VPL equivalence laws.

Fig. 2: Formal de�nition of VPL.

as modal logic (Garson, 2018), because a choice waits until there is enough
information to choose an alternative (i.e., until the formula is con�gured).

The con�guration semantics of VPL is given in Figure 2b and describes how
choices are eliminated from a formula. The semantics are parameterized by a
con�guration C, which is a partial function from dimensions to Boolean values.
The �rst four cases of the semantics simply propagate con�guration down the
formula, terminating at the leaves. The case for choices is the interesting one:
if the dimension of the choice is de�ned in the con�guration, then the choice is
replaced by its left or right alternative corresponding to the associated value
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of the dimension in the con�guration. If the dimension is unde�ned in the
con�guration, then the choice is left intact and con�guration propagates into
the choice's alternatives.

If a con�guration C eliminates all choices in a formula f , we call C total

with respect to f . If C does not eliminate all choices in f (i.e., a dimension
used in f is unde�ned in C), we call C partial with respect to f . We call a
choice-free formula plain, and call the set of all plain formulas that can be
obtained from f (by con�guring it with every possible total con�guration) the
variants of f .

To illustrate the semantics of VPL, consider the formula p∧A⟨q, r⟩, which
has two variants: p ∧ q when C(A) = true and p ∧ r when C(A) = false.
From the semantics, it follows that choices in the same dimension are syn-

chronized while choices in di�erent dimensions are independent. For example,
A⟨p, q⟩ ∧ B⟨r, s⟩ has four variants, while A⟨p, q⟩ ∧ A⟨r, s⟩ has only two (p ∧ r
and q ∧ s). It also follows from the semantics that nested choices in the same
dimension contain redundant alternatives; that is, inner choices are dominated

by outer choices in the same dimension. For example, A⟨p,A⟨r, s⟩⟩ is equiva-
lent to A⟨p, s⟩ since the alternative r cannot be reached by any con�guration.
As the previous example illustrates, the representation of a VPL formula is not
unique; that is, the same set of variants may be encoded by di�erent formulas.
Figure 2c de�nes a set of equivalence laws for VPL formulas. These laws follow
directly from the con�guration semantics in Figure 2b and can be used to de-
rive semantics-preserving transformations of VPL formulas. For example, we
can simplify the formula A⟨p∨ q, p∨ r⟩ by �rst applying the Or law to obtain
A⟨p, p⟩ ∨ A⟨q, r⟩, then applying the Idemp law to the �rst argument to obtain
p ∨A⟨q, r⟩ in which the redundant p has been factored out of the choice.

Running example. To demonstrate the application of VPL, we encode the
evolving Linux kernel feature model from the background as a variational for-
mula. Recall that variation in this domain arises from changes in the logical
structure of the feature model between kernel versions. Our goal is to con-
struct a single variational formula that encodes the set of all feature models as
variants. Ideally, this variational formula should also maximize sharing among
the feature models in order to avoid redundant analysis later.

Every set of plain formulas can be encoded as a variational formula system-
atically by �rst constructing a nested choice containing all of the individual
variables as alternatives, then factoring out shared subexpressions by applying
the laws in Figure 2c. For sets of feature models this would correspond to a
nested choice containing all of the individual feature models as alternatives,
then factoring out commonalities in the variational formula. Unfortunately,
the process of globally minimizing a variational formula in this way is hard4

since often we must apply an arbitrary number of laws right-to-left in order
to set up a particular sequence of left-to-right applications that factor out
commonalities.
4 We hypothesize that it is equivalent to BDD minimization, which is NP-complete, but

the equivalence has not been proved; see Walkingshaw et al. (2014).
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Due to the di�culty of minimization, we instead demonstrate how one can
build such a formula incrementally. Our variational formula will use the di-
mensions L1, . . . , Ln to refer to changes introduced in the feature model in the
corresponding version of the Linux kernel. We begin by combining FM 0 and
FM 2 because the syntactic distance between the two is smaller than between
other pairs of feature models in our example. Feature models may be combined
in any order as long as the variants in the resulting formula correspond to their
plain counterparts. The only change between FM 0 and FM 2 is the addition of
mitigations and is captured by a choice in dimension L2. The change is nested
in the left alternative so that it will be included for any con�guration where
L2 is true. This yields the following variational formula.

fFM 02 = L2 ⟨mitigations, T⟩ ↔ c0.0 ∧ c1.0 ∧ . . . ∧ cn.0

We exploit the fact that T ↔ c0.0 ∧ . . . is equivalent to c0.0 ∧ . . . to recover a
formula equivalent to FM 0 for con�gurations where L2 is false. 5

Next we combine fFM 02
with FM 1 to obtain a variational formula that

captures the feature models of versions L0, L1, and L2. As before, every change
in FM 1 is wrapped in a choice in dimension L1. The choice in L2 is nested in
the right alternative of a choice in L1 because that change is not present in
L1:

fFM 012
= L1 ⟨(spectre_v2 ∨ l1tf ),L2 ⟨mitigations, T⟩⟩
↔ L1 ⟨(c0.0 ∧ (nospec_store_bypass-disable → fj), c0.0⟩
∧ L1 ⟨c1.0, T⟩ ∧ c1 ∧ L1 ⟨(pti → ci.0), T⟩ ∧ . . . ∧ cn

Now that we have constructed the variational formula, we need to ensure that
it encodes all variants of interest and nothing else. In this example, this is
relatively easy to con�rm by enumerating all total con�gurations involving L1

and L2. However, we'll return to the general case in the discussion of variational
models in Section 4.

4 Variational Satis�ability Solving

In this section, we present our algorithm for variational satis�ability solving.
Section 4.1 provides an overview of the algorithm and introduces the notion
of variational models as solutions to variational SAT problems. Section 4.2
provides the formal speci�cation.

4.1 General Approach

We solve VPL formulas recursively, decoupling the handling of plain terms
from the handling of variational terms. The intuition behind our algorithm is

5 Consider T ↔ p, this is equivalent to (T → p)∧ (p → T). Notice that for p → T the truth
value of p does not matter because F → T ≡ T and T → T ≡ T. This leaves just T → p, which
is T if and only if p ≡ T, and thus T → p ≡ p. Finally, we get T ↔ p ≡ p.
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rei�cation
engine

vmodel
constructor

reduction
engine

base
solver

query
formula

variation
context

vmodel

plain models
s, v1 ∨ v2,
v1 ∧ v2

vcore, •

v ∧ JD⟨f1, f2⟩KC
v ∧ JD⟨f1, f2⟩KC ∪ {(D,T)},
v ∧ JD⟨f1, f2⟩KC ∪ {(D,F)}

•

Fig. 3: System overview of the variational solver.

to �rst process as many plain terms as possible (e.g., by pushing those terms
to the underlying solver) while skipping choices, yielding a variational core

that represents only the variational parts of the original formula. We then
alternate between con�guring choices in the variational core and processing
the new plain terms produced by con�guration until the entire term has been
consumed. Each consumption of the core corresponds to one variant of the
original VPL formula since all of its choices will have been con�gured in a
particular way. At which point, we query the underlying solver to obtain a
model for that variant, then backtrack to solve another variant by con�guring
the choices di�erently. Finally, the models for all variants are combined into a
single variational model that captures the result of solving all variants of the
original VPL formula.

We present a simpli�ed overview of the variational solver as a state dia-
gram in Figure 3 that operates on the input's abstract syntax tree. Labels on
incoming edges denote inputs to a state, while labels on outgoing edges denote
return values. We show only inputs for recursive edges. Labels separated by
a comma share the edge. We omit labels that can be derived from the logical
properties of connectives, such as commutativity of ∨ and ∧.

The variational solver has four subsystems:

� The reduction engine processes plain terms and generates the variational
core, which is ready for rei�cation.

� The rei�cation engine con�gures choices in a variational core.
� The base solver is an o�-the-shelf incremental solver (such as Z3 (de Moura
and Bjørner, 2008)) or Boolector (Brummayer and Biere, 2009)), used to
produce plain models.

� The variational model constructor synthesizes a single variational model
from the set of plain models returned by the base solver.

The variational solver takes a VPL formula called a query formula and an
optional input called a variation context (vc). A vc is a propositional formula
of dimensions that restricts the solver to a subset of variants. For example,
passing vc = D1 ∧ D2 would restrict the solver to consider only variants
in which both D1 and D2 are T. The variational solver translates the query
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formula to a formula in an intermediate language (IL) that the reduction and
rei�cation engines operate over. The syntax of the IL is given below.

v ::= • | t | r | s | ¬v | v ∧ v | v ∨ v | D⟨f, f⟩

The IL includes two kinds of terms not present in the input query formulas:
First, the • value, pronounced unit, represents terms that have already been
fully processed and sent to the base solver. Recall that the base solver is
incremental; during reduction, we will incrementally push subterms of the
formula to the base solver's assertion stack (see Section 2) and replace those
subterms with •. Second, a symbolic value s represents a plain subterm that has
been reduced but cannot yet be sent to the base solver (see Section 4.1). Also,
note that choices contain VPL formulas (f ) as alternatives, not IL formulas.
Thus, an IL formula is a mix of partially processed subterms outside of choices
and unprocessed formulas within choices.

Reduction Engine: Derivation of a Variational Core. Reduction transforms an
IL formula into a variational core. A variational core consists of (1) a set of
assertions that have been sent to the base solver, and (2) a fully reduced IL
formula. A fully reduced IL formula consists only of unit values, •; symbolic
references, s; logical connectives and choices, with the invariant that all connec-
tives must contain at least one choice. For example, the IL formula s∧D⟨f1, f2⟩
is fully reduced, while r∧D⟨f1, f2⟩ is not fully reduced since it contains a (non-
symbolic) variable reference r. As another example, (s1∧ s2)∨D⟨f1, f2⟩ is not
fully reduced since the subterm s1 ∧ s2 contains a logical connective without
a choice as a descendant. Therefore, the subterm s1 ∧ s2 has to be reduced to
another symbolic value s3 �rst.

The goal of reduction is to do as much work as possible without con�gur-

ing any choices. During variational solving, each state where we con�gure a
choice is a state that we must backtrack to in the future (to select the other
alternative), so we want to maximize the work we do before reaching each
backtracking point. A variational core represents an intermediate state where
we cannot make any more progress without con�guring a choice.

The variational core for a VPL formula is computed by the reduction engine
illustrated in Figure 4. The reduction engine has two states: evaluation, which
communicates to the base solver to process plain terms, and accumulation,
which is called by evaluation to create symbolic references.

To illustrate how the reduction engine computes a variational core, consider
the query formula f = ((a∧ b)∧A⟨f1, f2⟩)∧ ((p∧¬q)∨B⟨f3, f4⟩). Translated
to an IL formula, f has four references (a, b, p, q) and two choices. Generating
the core begins with evaluation. Evaluation matches the root ∧ node of f
and recurs following the v1 ∧ v2 edge, where v1 = (a ∧ b) ∧ A⟨f1, f2⟩ and
v2 = (p ∧ ¬q) ∨ B⟨f3, f4⟩.

When evaluating v1, evaluation again matches on ∧, creating another re-
cursive call with v′1 = a ∧ b and v′2 = A⟨f1, f2⟩. One more match on ∧ within
v′1 yields v′′1 = a and v′′2 = b. In this call, both a and b are references, so
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Fig. 4: Overview of the reduction engine.

evaluation sends each in turn to the base solver, following the r , s, t edge,
yielding • for each. The resulting term • ∧ • will be further reduced to simply
•, which is returned as the result of evaluating v′1. This value indicates that
the entire term v′1 has been send to the base solver. At this point, we have
v′1 = • and v′2 = A⟨f1, f2⟩. The term v′2 is a choice, which cannot be reduced
during evaluation, so the result of evaluating v1 is • ∧A⟨f1, f2⟩.

The evaluation of v1 demonstrates that evaluation can process conjunc-
tion nodes by simply sending plain subterms to the base solver and leaving
choices alone (to be processed later). This works because the terms in the base
solver's assertion stack are implicitly conjuncted together. When we process
the choices later, we can simply push alternatives to the stack, and when we
backtrack, we can pop them back o� again and push di�erent alternatives.
In contrast, we cannot blithely push the children of a disjunction or negation
node onto the assertion stack since the semantics of the assertion stack does
not align with these logical operations. However, we still want to somehow
process these nodes so that we do not have to perform redundant work each
time we backtrack. Instead of evaluating them by sending them to the base
solver, we instead accumulate them into symbolic values to be reused later.
This process is illustrated during the evaluation of v2.

When reducing the right child, v2 = (p ∧ ¬q) ∨ B⟨f3, f4⟩ of f , evaluation
will match on the root ∨ and transition via the edge labeled v1 ∨ v2. This will
split v2 into v′1 = p∧¬q and v′2 = B⟨f3, f4⟩. Note that the subterm v′1 is a plain
expression. However unlike evaluation, this expression will not be sent to the
base solver, but will instead be �accumulated� to a symbolic value. A symbolic
value is a place holder for an arbitrarily large plain subterm. This enables us
to process the subterm only once (during the accumulation phase), and then
(re-)use the symbolic value throughout the rest of variational solving.

Accumulation of a plain subterm is a recursive function that traverses
down the formula's syntax tree, eventually replacing variables at the leaves by
symbol values, then accumulating each subterm that consists only of logical
operations applied to symbolic values with a new symbolic value. A mapping
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(explained below) is maintained to enable replacing identical subterms with the
same symbolic values to maximize sharing. In the case of v′1, the variables p and
q will be replaced by symbolic values sp and sq yielding the intermediate term
sp∧¬sq. Then ¬sq will be replaced by a new symbolic value s′q yielding sp∧s′q.
Finally, since this term consists of a logical operation applied to symbolic
values, the entire subterm will be accumulated to a new symbolic value spq.

Since v′2 is a choice, there is nothing left to do during accumulation, so the
result of accumulating v2 is spq ∨ B⟨f3, f4⟩, which is returned to evaluation.
Finally, since both v1 and v2 have been fully reduced, we obtain the variational
core A⟨f1, f2⟩ ∧ (spq ∨ B⟨f3, f4⟩) for f .

The variational core represents an intermediate term where as much work
has been done as possible�either by sending terms to the base solver or by
accumulating subterms to simpler symbolic values�before we have to process
the next choice. If instead we had simply solved f by recursively evaluating
the subterms of f , plain subterms, such as a∧b and p∧¬q, would be processed
once for each variant even though they are unchanged. Evaluation moves sub-
terms into the solver state to be reused among di�erent variants. Accumulation
processes and caches subterms that cannot be immediately evaluated so that
they can be e�ciently evaluated later.

The symbolic values produced by accumulation correspond to variables
in the reduction engine's memory that represent a set of statements declared
in but not yet sent to the base solver.6 For example, the symbolic value spq
represents three declarations in the base solver:

( declare -const p Bool)
( declare -const q Bool)
( declare -fun spq () Bool (and p (not q)))

A variational core repesented in the base solver is a sequence of statements
that contain �holes� ♢, which correspond to the choices that have yet to be
processed. For example, the variational core of f could be encoded as:

( declare -const ♢) ;; choice A
... ;; declarations and assertions for alternatives

( declare -const ♢) ;; choice B
... ;; declarations and assertions for alternatives

( assert (or spq ♢)) ;; assertion waiting on the con�guration of B

This is not yet a program that can be executed by the base solver, but rather
a template that will be �lled in when we con�gure a choice, then sent to the
base solver. The constant declared for each choice tracks how we con�gured the
choice, while the ... will be �lled with declarations and assertions corresponding
to the con�gured alternative. Since we are sending this template to the base
solver potentially many times, it is important that it is as small as possible.
We achieved this in our example through reduction by asserting a ∧ b once
during evaluation (so that it doesn't appear in the variational core at all) and

6 In this section, we use SMTLIB2 snippets to represent operations performed on the base
solver. While we target SMTLIB2, conforming to the standard is not a requirement. Any
solver, such as Minisat (Eén and Sörensson, 2004), that exposes an incremental API, such
as IPASIR (SAT Competition, 2021), can be used to implement variational SAT solving.
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accumulating p ∧ ¬q to spq once so that we can reuse it in each use of the
template.

To summarize: The reduction engine produces a variational core by recur-
sively processing an IL term. Plain subterms outside of choices are either sent
to the base solver (in which case they do not appear in the variational core) or
are cached and replaced in the variational core by a symbolic value. Reduction
does not change any subterms within choices. Therefore, a variational core
produced by reduction consists only of top-level logical connectives applied to
choices and/or symbolic values.

Rei�cation Engine: Solving the Variational Core. Once a variational core is
obtained from the reduction engine, it is sent to the rei�cation engine to be
solved. The rei�cation engine processes a variational core by con�guring its
choices and solving each variant. Rei�cation ensures that eventually all vari-
ants of the variational core will be explored by implementing a backtracking
algorithm.

In each con�guration step, the rei�cation engine produces a new IL term
in which all choices in one dimension have been eliminated. This new term
is immediately sent back to the reduction engine to obtain a new variational
core that will be sent back to the rei�cation engine, and so on. In this way, the
solver alternates between reduction and rei�cation until all choices have been
eliminated. At which point, a solution in the form of a satis�able assignment is
obtained for that variant from the base solver (see the discussion of variational
models, later in this section) and the rei�cation engine backtracks to solve the
next variant.

The rei�cation engine keeps track of which alternative is selected from each
choice by maintaining a con�guration value C. In Section 3, we formalized a
con�guration as a function D → B⊥ (i.e., a function from dimension names to
the domain of Boolean values which includes a single extra element; ⊥).

A dimension mapped to T indicates that the left alternatives of all choices
in that dimension have been selected, while F indicates the right alternatives
have been selected. A dimension mapped to ⊥ has not yet been con�gured. In
this section, we represent con�gurations extensionally as sets of tuples D × B.
For example, the con�guration C = {(A, T), (B, F)} maps dimension A to T,
dimension B to F, and all other dimensions to ⊥. The con�guration value is
initialized to the variation context passed into the solver and is updated during
rei�cation.

When a choice is encountered during rei�cation, we check to see whether
its dimension is de�ned in the con�guration, that is we check C(D) ̸= ⊥. If
C(D) ̸= ⊥, then we replace the choice by the corresponding alternative. For
example, given a variational core s∧A⟨f1, f2⟩, if (A, T) ∈ C, then the formula
is rei�ed to s ∧ f1, which is sent to the reduction engine; if (A, F) ∈ C, then
s ∧ f2 is sent to the reduction engine. If the dimension is not de�ned in the
con�guration, then the rei�cation must explore both possibilities. It does this
by �rst extending the con�guration to explore the left branch. When that path
has been fully processed, it backtracks to extend the con�guration to explore
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the right branch. For example, if C(A) = ⊥, then rei�cation explores the left
alternative with C ′ = C ∪ {(A, T)}, �nishes, then backtracks to explore the
right alternative with C ′ = C ∪ {(A, F)}.

To the base solver, the backtracking performed by rei�cation is imple-
mented as a linear sequence of assertion stack manipulations. For example,
reifying s ∧ A⟨f1, f2⟩ when C(A) = ⊥ corresponds to a sequence of solver
commands such as the following:

... ;; declarations and assertions for the variational core
(push 1) ;; create a new context for the left alternative

... ;; declarations de�ning the left alternative to be sf1
( declare -fun sAT

() Bool (and s sf1 )) ;; de�ne formula containing alternative
( assert sAT

)
... ;; solve this formula

(pop 1) ;; done with the left alternative
(push 1) ;; create a new context for the right alternative

... ;; declarations de�ning the left alternative to be sf1
( declare -fun sAF

() Bool (and s sf2 )) ;; de�ne formula containing alternative
( assert sAF

)
... ;; solve this formula

(pop 1) ;; done with the right alternative

The backtracking is realized through the use of push and pop to create a new
context to solve each alternative, and to restore the original state after we're
done. The 1 arguments to push and pop indicate that we're pushing/popping
one level of context to the assertion stack. The lines beginning with declare

-fun de�ne the formula to be solved after con�guring the choice; it uses the
left alternative or right alternative by substituting the alternative into the
variational core where the choice used to be.

Variational Models. The solution to a plain SAT problem, called a model, is
a Boolean value indicating whether the formula is satis�able, and if so, an
assignment of T or F to all of the Boolean variables in the formula such that
the formula evaluates to T. We de�ne a variational model as a data structure
that enables recovering a plain model for each variant of a variational formula.
The goal of a variational model is to compactly and accurately represent the
plain models produced by the base solver for each satis�able variant.

While plain models map variables to Boolean values, variational models
map variables to variation contexts (Boolean formulas of dimensions) that
record in which variants the variable was assigned T. We denote the variation
context for a variable r as vcr. For example, the mapping vcr = A∧B indicates
that variable r was assigned T in models where both dimensions A and B have
been con�gured to T, and r was assigned F otherwise.

Additionally, variational models maintain a special variation context
mapped to a variable called Sat , which tracks the con�gurations found to
be satis�able. With Sat we can use variational models to �nd a single satis�-
able con�guration by applying a plain SAT solver to the Sat variation context,
or we can enumerate all satis�able con�gurations by applying the all-SAT op-
eration supported by most SAT solvers, which would return all models that
make Sat satis�able.
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a → T

b → F

p → F

q → T

CTT = {(A, T), (B , T)}

a → T

b → F

c → T

p → T

q → F

CFT = {(A, F), (B , T)}

a → T

b → F

c → T

p → T

q → F

CFF = {(A, F), (B , F)}

Fig. 5: Possible plain models for variants of f .

Sat → (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B)
a → (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B)
b → F

c → (¬A ∧ ¬B) ∨ (¬A ∧ B)
p → (¬A ∧ ¬B) ∨ (¬A ∧ B)
q → (A ∧ B)

Fig. 6: Variational model of the plain models in Figure 5.

As an example, consider the query formula f :

f = ((a ∧ ¬b) ∧A⟨a → ¬p, c⟩) ∧ ((p ∧ ¬q) ∨ B⟨q , p⟩)

We see that the variant, with con�guration {(A, T), (B , F)} is unsatis�able,
because a must always be T, which forces p be F, which means (p ∧ ¬q) ∨ p
is always F. Assuming each other variant is satis�able, there are a minimum
of three possible plain models. Figure 5 shows these example plain models
while the corresponding variational model is shown in Figure 6. The variation
context Sat consists of three disjuncted terms, one for each satis�able variant
(given by CTT , CFT , and CFF ). We can retrieve the value of any variable x
in any con�guration by substituting the con�guration's values in the variables
variation context vcx . For example, we can retrieve a's value in the plain model
returned for CFT = {(A, F), (B , T)} in the following way:

a ≡ (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B) vc for a

≡ (¬F ∧ ¬T) ∨ (¬F ∧ T) ∨ (F ∧ T) Substitute F for A, T for B

≡ T Result

Additionally, we can compute all variants where a variable j is satis�able by
solving for all possible models of vcj with all-SAT(vcj ).

Variational models are constructed incrementally by merging each new
plain model returned by the base solver into the variational model. A merge
requires the current con�guration, the plain model, and the current vc of
the variant being solved. The variational model is empty until the �rst plain
model is emitted from the base solver. Once a plain model is emitted from
the base solver, the variational model constructor iterates over each variable
in the variational model updating that variables assignment in the variational
model. There are four cases:

1. If a variable is assigned F in the plain model and is assigned F in the
variational model, then it remains assigned to F; b in Figure 5 and Figure 6
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is one such example. We call variables that are never assigned a vc , such
as b, constant because they are independent of the variants.

2. If a variable is assigned F in the plain model, but is assigned a vc in the
variational model, then it is skipped and its' assignment in the variational
model is not updated. For example, if the plain models shown in Figure 5
were emitted in order from CTT to CFF then q 's assignment is not updated
when the CFT and CFF plain models are merged, resulting in q 's �nal
assignment shown in Figure 6.

3. If a variable is assigned T in the plain model but F in the variational model
then its' entry in the variational model must be updated. The vc of that
variable is set to the formula that describes the satis�able variant. For
example, if the plain models shown in Figure 5 were emitted in order from
CTT to CFF then the assignment of p in the variational model changes
from F once the CFT plain model is merged.

4. If a variable is assigned T in the plain model, and is assigned a vc in the
variational model, then a new vc is constructed by pre-pending the current
vc to the assigned vc with ∨. For example, vca in Figure 6 shows the order
of merges: The oldest vc is last in the chain of ∨'s (i.e., the one representing
CTT ), while the most recent is the vc representing CFF ; the last model to
be emitted and merged from the base solver.

To summarize: Variational models compactly store and express plain mod-
els for each variant processed by the variational solver without storing a plain
model for each variant. Variational models do this by representing each vari-
ant by its variation context and mapping each variable in the query formula
to a Boolean formula of variation contexts in disjunctive normal form. Plain
models for a particular variant are then recovered through substitution on the
variational model with the variant's con�guration.

4.2 Formalization

In this subsection, we formalize variational SAT solving by specifying the
semantics of the accumulation, evaluation, and solving the variational core,
which we call choice removal. As described in Figure 3, the variational solver
interacts with the base solver via several primitive operations. In our semantics,
we simulate these primitive operations by tracking their e�ects on two stores.
The accumulation store ∆ is a map from IL terms to symbolic references,
which tracks the values cached during accumulation. The evaluation store Γ
is the set of symbolic references that have been sent to the base solver during
evaluation.

Interface to the Base Solver. Figure 7 lists a minimal set of primitive opera-
tions that the base solver is assumed to support. These primitive operations
de�ne the interface between the base solver and the variational solver.

The primitive operations can be roughly grouped into two categories. The
�rst four operations, consisting of the logical operations Not, And, and Or, plus
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Not : ∆ × s → ∆ × s Negate a symbolic value

And : ∆ × s× s → ∆ × s Conjunction of symbolic values

Or : ∆ × s× s → ∆ × s Disjunction of symbolic values

Var : ∆ × r → ∆ × s Create symbolic value based on a variable

Assert : Γ ×∆ × s → Γ Assert a symbolic value to the solver

GetModel : Γ ×∆ → m Get a model for the current solver state

Fig. 7: Assumed base solver primitive operations.

the Var operation, are used in the accumulation phase and are concerned with
creating and maintaining symbolic references that may stand for arbitrarily
complex subtrees of the original formula. These operations simulate caching
information in the base solver. The �nal two operations, Assert and GetModel,
are used in the evaluation phase and simulate pushing new assertions to the
base solver and obtaining a plain satis�ability model based on the current
solver state, respectively.

It's important to note that our primitive operations are pure functions
and do not simulate interacting with the base solver via side e�ects. The
e�ect of a primitive operation can be determined by observing its type. For
example, the Assert operation pushes new assertions to the base solver; its
type represents this by including an evaluation store as input and producing a
new evaluation store (with the assertion included) as output. Note that we do
not need a primitive operation to simulate popping assertions from the base
solver. Instead, we simulate this by directly reusing old evaluation stores.

Many of the primitive operations operate on references to symbolic val-
ues. Such symbolic references may stand for arbitrarily complex subtrees of
the original formula, built up through successive calls to the corresponding
primitive operations. For example, recall the example formula p ∧ ¬q from
Section 4.1, which was replaced by the symbolic value spq after the following
sequence of SMTLIB2 declarations.

( declare -const p Bool)
( declare -const q Bool)
( declare -fun spq () Bool (and p (not q)))

In our formalization, we would represent this same transformation of the for-
mula p ∧ ¬q into a symbolic reference spq using the following sequence of
primitive operations:

Var(∅, p) = (∆1, sp)

Var(∆1, q) = (∆2, sq)

Not(∆2, sq) = (∆3, s
′
q)

And(∆3, sp, s
′
q) = (∆4, spq)

The accumulation store tracks the information that is associated with each
symbolic reference. The store must therefore be threaded through the calls to
each primitive operation so that subsequent operations have access to existing
de�nitions and can produce a new, updated store. For example, the �nal store
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Var(∆, r) =

{
(∆, s) (r, s) ∈ ∆

Var(∆, r) otherwise

Not(∆, s) =

{
(∆, s′) (¬s, s′) ∈ ∆

Not(∆, s) otherwise

And(∆, s1, s2) =

{
(∆, s3) (s1 ∧ s2, s3) ∈ ∆

And(∆, s1, s2) otherwise

Or(∆, s1, s2) =

{
(∆, s3) (s1 ∨ s2, s3) ∈ ∆

Or(∆, s1, s2) otherwise

Fig. 8: Wrapped accumulation primitive operations.

produced by the above example contains the following mappings from IL terms
to symbolic references, ∆4 = {(p, sp), (q, sq), (¬sq, s′q), (sp ∧ s′q, spq)}.

When comparing the SMTLIB2 notation to our formalization, observe that
each use of declare -const corresponds to a use of the Var primitive, while the
declare -fun line in SMTLIB2 may potentially expand into several primitive op-
erations in our formalization. For the evaluation primitives, the Assert oper-
ation corresponds to an SMTLIB2 assert call, while the GetModel operation
corresponds roughly to an SMTLIB2 check-sat call, which retrieves a (plain)
model for the current set of assertions on the stack. However, the exact se-
mantics of check-sat depends on the base solver in use. For example, given the
plain formula p = a ∨ b ∨ c, the Z3 solver returns only a minimal satis�able
model, such as {b = T}, providing no values for the other variables in the for-
mula. To normalize this behavior across solvers, we instead consider GetModel
equivalent to check-sat followed by a get-value call for every variable in the query
formula, yielding a complete model. For example, a complete model for p would
be {a = F, b = T, c = F}.

Finally, in Figure 8 we de�ne wrapped versions of the primitive operations
used in accumulation to cache already computed values. These wrapper func-
tions �rst check to see whether a symbolic reference for the given IL term exists
already in the accumulation store, and if so, returns it without changing the
store. Otherwise, it invokes the corresponding primitive operation to generate
and return the new symbolic reference and updated store.

Accumulation. The accumulation phase is de�ned inductively using inference
rules (Harper, 2016, Section 2.2) in Figure 9 as a relation of the form (∆, v) 7→
(∆′, v′). Accumulation replaces plain subterms with references to symbolic
values whenever possible. The heart of accumulation are the �rst four rules
in Figure 9. In the A-Ref rule, a variable reference is replaced by a symbolic
reference by invoking the wrapped version of the Var primitive, which returns
the corresponding symbolic reference or generates a new one, if needed.

The A-Not-S, A-And-S, and A-Or-S rules all replace an IL term by a sym-
bolic reference by invoking the corresponding wrapped primitive operation.
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Var(∆, r) = (∆′, s)

(∆, r) 7→ (∆′, s)
A-Ref

(∆, v) 7→ (∆′, s) Not(∆′, s) = (∆′′, s′)

(∆,¬v) 7→ (∆′′, s′)
A-Not-S

(∆, v1) 7→ (∆1, s1) (∆1, v2) 7→ (∆2, s2) And(∆2, s1, s2) = (∆3, s3)

(∆, v1 ∧ v2) 7→ (∆3, s3)
A-And-S

(∆, v1) 7→ (∆1, s1) (∆1, v2) 7→ (∆2, s2) Or(∆2, s1, s2) = (∆3, s3)

(∆, v1 ∨ v2) 7→ (∆3, s3)
A-Or-S

(∆,D⟨e1, e2⟩) 7→ (∆,D⟨e1, e2⟩)
A-Chc

(∆, v) 7→ (∆′, v′)

(∆,¬v) 7→ (∆′,¬v′)
A-Not-V

(∆, v1) 7→ (∆1, v
′
1) (∆1, v2) 7→ (∆2, v

′
2)

(∆, v1 ∧ v2) 7→ (∆2, v
′
1 ∧ v′2)

A-And-V

(∆, v1) 7→ (∆1, v
′
1) (∆1, v2) 7→ (∆2, v

′
2)

(∆, v1 ∨ v2) 7→ (∆2, v
′
1 ∨ v′2)

A-Or-V

Fig. 9: Accumulation inference rules.

These rules all require that their subterms reduce to symbolic references. This
invariant is enforced by a premise in each rule which recursively accumulates
the subterm to a symbolic. For example, the premise (∆, v) 7→ (∆′, s) in the
A-Not-S rule enforces that the subterm being negated v, can be accumulated
to a symbolic s, otherwise the Not cannot be invoked. Similar premises occur
in A-Not-S A-And-S and A-Or-S to guarantee this invariant. Observe that a
left-to-right, post-order evaluation is enforced in these rules by the propaga-
tion of the accumulation store. For example, in A-And-S, the accumulation of
v1 yields the store ∆1, which is used as input to the accumulation of v2; the
accumulation of v2 produces ∆2, which is passed to the wrapped primitive And
operation.

However, not all subterms can be completely reduced to symbolic refer-
ences. In particular, variational subterms�subterms that contain one or more
choices within them�cannot be accumulated to a symbolic reference. The
A-Chc rule prevents accumulation under a choice. The A-Not-V, A-And-V,
and A-Or-V rules are congruence rules that recursively apply accumulation to
subterms. Although not explicitly stated in the premises, it is assumed that
these A-*-V rules apply only if the corresponding A-*-S rule does not apply.
That is, when at least one of the subterms does not reduce completely to a
symbolic reference (because it contains a choice).

We have omitted rules for processing the constant values T and F. These
rules correspond closely to the A-Ref rule, but use a prede�ned variable ref-
erence for the true and false constants.

To illustrate the semantics of accumulation, consider the plain formula g =
a∨ (a∧ b) with an initial accumulation store ∆ = ∅. The A-Or-S rule matches
the root ∨ connective with v1 = a and v2 = a ∧ b. Since v1 is a reference, the
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(∆, v) 7→ (∆′, v′) (Γ,∆′, v′) ↣ (Γ ′,∆′′, v′′)

(Γ,∆, v) ↣ (Γ ′,∆′′, v′′)
E-Acc

Assert(Γ,∆, s) = Γ ′

(Γ,∆, s) ↣ (Γ ′,∆, •)
E-Sym

(Γ,∆,D⟨e1, e2⟩) ↣ (Γ,∆,D⟨e1, e2⟩)
E-Chc

(Γ,∆, v1 ∨ v2) ↣ (Γ,∆, v1 ∨ v2)
E-Or

(Γ,∆, v1) ↣ (Γ1,∆1, •) (Γ1,∆1, v2) ↣ (Γ2,∆2, v
′
2)

(Γ,∆, v1 ∧ v2) ↣ (Γ2,∆2, v
′
2)

E-And-L

(Γ,∆, v1) ↣ (Γ1,∆1, v
′
1) (Γ1,∆1, v2) ↣ (Γ2,∆2, •)

(Γ,∆, v1 ∧ v2) ↣ (Γ2,∆2, v
′
1)

E-And-R

(Γ,∆, v1) ↣ (Γ1,∆1, v
′
1) (Γ1,∆1, v2) ↣ (Γ2,∆2, v

′
2)

(Γ,∆, v1 ∧ v2) ↣ (Γ2,∆2, v
′
1 ∧ v′2)

E-And

Fig. 10: Evaluation inference rules.

A-Ref rule applies, generating a new symbolic reference sa and store ∆1 =
{(a, sa)} via Var(∆, a) = (∆′

1, sa). Processing v2 requires an application of
the A-And-S rule with v′1 = a and v′2 = b, both of which require another
application of the A-Ref rule. For v′1, the variable a is already present in
the store ∆1 since sa was previously generated, so sa is returned without
modifying the store (because we use the wrapper primitive Var). For v′2, a
new symbolic reference sb is generated and added to the store yielding ∆2 =
{(a, sa), (b, sb)}. Since both the left and right sides of v2 reduce to a symbolic
reference, the And primitive is invoked, yielding a new symbolic reference sab
and the store ∆3 = {(a, sa), (b, sb), (a ∧ b, sab)}. Finally, since both the left
and right sides of g reduce to symbolic references, the Or primitive is invoked
yielding the �nal symbolic reference sg, and the �nal accumulation store ∆4 =
{(a, sa), (b, sb), (sa ∧ sb, sab)(sa ∨ sab, sg)}.

When a formula contains choices, all of the plain subterms surrounding the
choices are accumulated to symbolic references, but choices remain in place and
their alternatives are not accumulated. For example, consider the variational
formula g′ = (a ∨ (a ∧ b)) ∨ D⟨a, a ∧ b⟩ ∧ (a ∨ (a ∧ b)) which contains two
instances of g as subterms. The formula g′ accumulates to the variational core
sg ∨D⟨a, a∧ b⟩∧sg with the same �nal store ∆4 produced when accumulating
g alone. Note that each instance of g in g′ was reduced to the same symbolic
reference sg and the alternatives of the choice were not reduced.

Evaluation. The evaluation phase is de�ned in Figure 10 as a relation of the
form (Γ,∆, v) ↣ (Γ ′, ∆′, v′), where an evaluation store Γ represents the base
solver's state. The E-Acc and E-Sym rules are the heart of evaluation: E-Acc
enables accumulating subterms during evaluation, while E-Sym sends a fully
accumulated subterm to the base solver. The E-Acc rule passes the input term
v to accumulation (note the di�erent arrows in the premises; the �rst premise
links to the accumulation relation in Figure 9), then re-evaluates the accumu-
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lated term v′. Thus, the E-Acc rule enables alternating between accumulation
and evaluation until the term is fully evaluated.

Once a term has been fully accumulated to a symbolic value, it can be
sent to the base solver by E-Sym. When a subterm is sent to the base solver
(using Assert), it is replaced by the unit value • and the evaluation store
Γ is updated accordingly. Conceptually, the evaluation store Γ represents the
internal state of the underlying solver (e.g. Z3's internal state). We model
Γ as the set of assertions that have been sent to the base solver. For ex-
ample, given the accumulation store ∆ = {(a, sa), (b, sb), (sa ∧ sb, sab)}, the
assertion Assert({}, ∆, sa) yields {sa} as sa is now on the base solver's asser-
tion stack. Subsequent assertions add more elements to this set, for example,
Assert({sa}, ∆, sab) = {sa, sab}.

Evaluation cannot occur under choices or un-accumulated disjunctions (i.e.,
disjunctions that contain choices). This is enforced by the E-Chc and E-Or rules
which preserve choices and disjunctions for choice removal or accumulation.
However, evaluation can occur under partially accumulated conjunctions. The
reason that partially accumulated conjunctions may be evaluated but par-
tially accumulated disjunctions may not, is that assertions on the base solver's
assertion stack are implicitly conjuncted together, as described in Section 4.1.

The three E-And* rules propagate accumulation over conjunctions. In all
three rules, the subterms are evaluated left-to-right, propagating the resulting
stores accordingly. The E-And-L rule states that if the left side of a conjunction
can be fully evaluated to •, then the expression can be evaluated to the result
of the right side. Likewise, E-And-R states that if the right side fully evaluates,
the result of evaluating the expression is the result of the left side. If neither
side fully evaluates to • (because both contain choices or disjunctions), E-And
applies, which evaluates subterms but leaves the conjunction in place to be
handled during choice removal.

As an example, consider evaluating the formula g = (a ∨ b) ∧D⟨a, c⟩ with
initially empty stores. We start by applying accumulation using the E-Acc rule,
yielding the intermediate term g′ = sab ∧D⟨a, c⟩ with the accumulation store
∆ = {(a, sa), (b, sb), (sa ∨ sb, sab)}. We then apply E-And-L to g′, which sends
the left subterm sab to the base solver via the E-Sym rule, and the right side
will be unevaluated via the E-Chc rule resulting in the expression • ∧D⟨a, c⟩.
Ultimately, evaluation yields the expression D⟨a, c⟩ via the E-And-L rule, with
accumulation store ∆ and evaluation store Γ = {sab}.

Choice removal. The top-level relation and main driver of variational solving
is the choice removal phase, which is de�ned in Figure 11 as a relation of
the form (C, Γ,∆,M, z, v) ⇓ M ′. The main role of choice removal is to relate
an IL term v to a variational model M ′. However, doing this requires sev-
eral pieces of context including a con�guration C, an evaluation store Γ, an
accumulation store ∆, an initial variational model M, and an evaluation con-
text z. The two stores have been explained earlier in this subsection, and are
only maintained by choice removal so they can be passed to the corresponding
evaluation and accumulation phases. Variational models are explained at the
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(Γ,∆, v) ↣ (Γ ′,∆′, •) Combine(M, GetModel(∆,Γ)) = M ′

(C, Γ,∆,M,⊤, v) ⇓ M ′ C-Eval

(D, true) ∈ C (C, Γ,∆,M, z, e1) ⇓ M ′

(C, Γ,∆,M, z,D⟨e1, e2⟩) ⇓ M ′ C-Chc-T

(D, false) ∈ C (C, Γ,∆,M, z, e2) ⇓ M ′

(C, Γ,∆,M, z,D⟨e1, e2⟩) ⇓ M ′ C-Chc-F

D /∈ dom(C)
(C ∪ (D, true), Γ,∆,M, z, e1) ⇓ M1 (C ∪ (D, false), Γ,∆,M1, z, e2) ⇓ M2

(C, Γ,∆,M, z,D⟨e1, e2⟩) ⇓ M2
C-Chc

(C, Γ,∆,M,¬ · :: z, v) ⇓ M ′

(C, Γ,∆,M, z,¬v) ⇓ M ′ C-Not

(∆,¬s) 7→ (∆′, s′) (C, Γ,∆,M, z, s′) ⇓ M ′

(C, Γ,∆,M,¬ · :: z, s) ⇓ M ′ C-Not-In

(C, Γ,∆,M, · ∧ v2 :: z, v1) ⇓ M ′

(C, Γ,∆,M, z, v1 ∧ v2) ⇓ M ′ C-And
(C, Γ,∆,M, s ∧ · :: z, v) ⇓ M ′

(C, Γ,∆,M, · ∧ v :: z, s) ⇓ M ′ C-And-InL

(∆, s1 ∧ s2) 7→ (∆′, s3) (C, Γ,∆,M, z, s3) ⇓ M ′

(C, Γ,∆,M, s1 ∧ · :: z, s2) ⇓ M ′ C-And-InR

(C, Γ,∆,M, · ∨ v2 :: z, v1) ⇓ M ′

(C, Γ,∆,M, z, v1 ∨ v2) ⇓ M ′ C-Or
(C, Γ,∆,M, s ∨ · :: z, v) ⇓ M ′

(C, Γ,∆,M, · ∨ v :: z, s) ⇓ M ′ C-Or-InL

(∆, s1 ∨ s2) 7→ (∆′, s3) (C, Γ,∆,M, z, s3) ⇓ M ′

(C, Γ,∆,M, s1 ∨ · :: z, s2) ⇓ M ′ C-Or-InR

Fig. 11: Choice removal inference rules

end of Section 4.1. We explain con�gurations and evaluation contexts when
describing the relevant rules below.

The C-Eval rule is our base case, and states that if v evaluates to • (because
all choices have been removed and we are left with a plain term), then we can
get the current model from the base solver using the GetModel primitive and
update our variational model. We use the operation Combine to perform the
variational model update operation described in Section 4.1.7 The Combine

operation merges the plain model obtained from GetModel with the current
variational model M yielding an updated variational model M ′. The rest of
the choice removal rules are structured so that C-Eval will be invoked once
for every variant of the variational core. The �nal output will be a variational
model that encodes the solutions to every variant of the original formula.

7 Note that Combine is not a primitive operation of the base solver, but rather a function
in the variational solver that updates a variational model.
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The three C-Chc* rules concern choices and are the heart of choice re-
moval. These rules make use of a con�guration C, which maps dimensions to
Boolean values or ⊥ and is encoded as a set of pairs. The con�guration tracks
which dimensions have been selected and ensures that all choices in the same
dimension are synchronized (see Section 3). Whenever a choice D⟨e1, e2⟩ is
encountered during choice removal, we check the con�guration C to determine
how to resolve the choice. In C-Chc-T, if (D, true) ∈ C, then the �rst alterna-
tive of the dimension has already been selected, so choice removal proceeds on
e1. Similarly in C-Chc-F, if (D, false) ∈ C then the right alternative has been
selected, so choice removal proceeds on e2. In C-Chc if D /∈ dom(C) and thus
C(D) = ⊥, then no value for the dimension D has yet been selected, so we
recursively apply choice removal to both e1 and e2, updating C accordingly
in each case. Observe that we use the same accumulation store ∆, evaluation
store Γ, and evaluation context z for each alternative. This represents a back-
tracking point in the solver, where we �rst solve e1, then reset the state of the
solver to the point where we encountered the choice and solve e2. Only the
variational model, which is threaded through the solution of both e1 and e2,
is maintained to accumulate the results of solving each alternative.

The remaining eight rules apply choice removal to the usual logical op-
erations. These rules make heavy use of an evaluation context z that keeps
track of where we are in a partially evaluated IL term during choice removal.
Evaluation contexts are de�ned as a zipper data structure (Huet, 1997) over
IL terms, given by the following grammar:

z ::= ⊤ | ¬ · :: z | · ∧ v :: z | s ∧ · :: z | · ∨ v :: z | s ∨ · :: z

An evaluation context z is a data structure that enables focusing on a
subterm within a partially evaluated IL term. A helpful metaphor is to think
of z as a �breadcrumb trail�, where new breadcrumbs are added to the left
and separated from the rest of the trail by the :: symbol, and where each
breadcrumb tracks the work that we've done and the work we have yet to do.
The empty context ⊤ indicates the root of the term. The other cases in the
grammar prepend a crumb to the trail. The crumb ¬· focuses on the subterm
within a negation, ·∧v focuses on the left subterm within a conjunction whose
right subterm is an unevaluated term v (work left to do), and s ∧ · focuses
on the right subterm of a conjunction whose left subterm has already been
reduced to s. The cases for disjunction are similar to conjunction.

As an example, consider the IL term ¬(a ∨ b) ∧ c. When evaluation is
focused on a, the evaluation context will be · ∨ b :: ¬ · :: · ∧ c :: ⊤, which states
that a exists as the left child of a disjunction whose right child is b, which is
inside a negation, which is the left child of a conjunction whose right child is
c. The b and c terms captured in the context are subterms of the original term
that must still be evaluated. During choice removal, IL terms are evaluated
according to a left-to-right, post-order traversal; as IL subterms are evaluated
they are replaced by symbolic references via accumulation. When evaluation
is focused on b, the context will be sa ∨ · :: ¬ · :: · ∧ c :: ⊤, where sa is the
symbolic reference produced by accumulating the variable a, and where the
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rest of the evaluation context is unchanged since we have not left evaluation of
the innermost disjunction yet. When evaluation is eventually focused on c, the
evaluation context will be simply sab ∧ · :: ⊤ since the entire subtree ¬(a ∨ b)
on the left side of the conjunction will have been accumulated to the symbolic
reference sab.

The C-Not, C-And, and C-Or rules de�ne what to do when encountering a
logical operation for the �rst time. In C-Not, we focus on the subterm of the
negation, while in C-And and C-Or, we focus on the left child while saving the
right child in the context.

The C-And-InL and C-Or-InL rules de�ne what to do when �nished pro-
cessing the left child of the corresponding operation.8 A fully processed child
has been accumulated to a symbolic reference s. At this point, we move the s
into the evaluation context and shift focus to the previously saved right child
of the logical operation.

Finally, the C-Not-In, C-And-InR, and C-Or-InR rules de�ne what to do
when evaluation �nished processing all children of a logical operation. At this
point, all children will have been reduced to symbolic references (s, s1, and
s2 respectively) so we can accumulate the entire subterm and apply choice
removal to the result. For example, in C-And-InR, we have just �nished pro-
cessing the right child to s2 and we previously reduced the left child to s1, so
in the �rst premise we now accumulate s1 ∨ s2 to s3. In the second premise,
we proceed with choice removal by recursively applying the relation to the
accumulated term s3 in the parent context z (i.e., the context in which the
original term was found).

Evaluation contexts support solving variational formulas recursively by
adding to the context as we move down the term and removing from the
context as we move back up. The extra e�ort over a more direct recursive
strategy is necessary to support the backtracking pattern implemented by the
C-Chc rule. Whenever we encounter a choice in a new dimension, we can simply
split the state of the solver to explore each alternative. Without evaluation
contexts, this would be extremely di�cult since choices may be deeply nested
within a variational formula. We would have to somehow remember all of the
locations in the term that we must backtrack to later and the state of the
solver at each of those locations. Instead, we make this context explicit as z
and use two copies of it, one in each premise of C-Chc.

Summary. Together, the de�nitions of accumulation ( 7→ ), evaluation (↣ ),
and choice removal (⇓) formalize variational SAT solving. Variational solving
is driven by choice removal, which invokes evaluation, which in turn invokes
accumulation. The interaction of these phases was informally described in

8 The -InL and -InR rule name su�xes are short for �in the left subterm� and �in the
right subterm�, respectively. So the rule C-And-InL applies when we are inside (and �n-
ished processing, since the focused expression is a symbolic reference s) the left subterm of
a conjunction, while C-And-InR applies when we are inside the right subterm of a conjunc-
tion.
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Section 4.1, but are formally de�ned by the rules in Figure 9, Figure 10 and
Figure 11 that link these phases together via their premises.

Accumulation replaces plain subterms by symbolic values, maximizing shar-
ing and reuse during variational solving. Evaluation guides the accumulation
process and coordinates the interaction with the base solver by sending accu-
mulated subterms to the assertion stack. Finally, choice removal implements
a backtracking traversal of the variational formula, con�guring choices, eval-
uating subterms, and updating the variational model as each plain variant is
encountered.

5 Quantitative Evaluation

Section 4 formalizes an approach to variational solving that shares subterms in
various ways to reduce the work of solving a large number of variant formulas.
However, theoretical solutions may not translate to observable e�ects in real-
world workloads, especially in the domain SAT and SMT solvers, which are
notoriously hard to evaluate using synthetic data (Gent and Walsh, 1994). In
this section, we provide a quantitative evaluation using a prototype variational
SAT solver to validate that our approach translates to reduced execution time
when solving sets of related SAT problems. Section 5.1 describes our experi-
ment methodology and Section 5.2 presents and discusses our results.

5.1 Experimental Methodology

There are several questions of interest to investigate. First, we must know
whether our two-step approach of generating and then solving a variational
core does reduce the solver execution time when solving many variants, and
therefore when workloads are highly variational. Second, we seek to answer
what e�ect the base solver has on the execution time of a variational SAT
solver. It is well known that the performance of incremental and non-incremental
SAT solvers varies even when run on the same input (Balyo et al., 2020)
and thus we expect the base solver to have an e�ect on execution time on
variational solving. Third, we must understand the e�ect sharing has on the
execution time of a variational SAT solver. Key to our approach is caching
equal subterms through indirection with symbolic values. Thus, con�rming
that sharing positively impacts execution time would validate our approach.
Fourth, we investigate if and when variational solving pays o� performance-
wise over a manual operation of incremental solvers. While a key qualitative
bene�t of variational SAT solving is freeing users from having to hand-write
instructions for incremental solvers, it may also pay o� in performance. In
particular, we wish to determine a threshold of variants above which varia-
tional solving is faster than incremental solving (neglecting the overhead for
instructing the incremental solver). Lastly, we investigate the execution time
slowdown induced by our approach to variational solving outside of its in-
tended use case, i.e., when solving plain VPL formulas. Our approach incurs
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an extra pre-processing cost under the assumption this cost pays o� over many
variants. Observing and estimating this cost elucidates future avenues of work
to mitigate this cost.

We investigate each research question with our prototype solver VSAT,
which we present in detail in Sec. 5.1.1. We summarize our research questions
as follows:

RQ1 How does execution time of VSAT increase as the number variants rep-
resented in a VPL formula increases?

RQ2 What is the impact of the base solver on execution time of VSAT?
RQ3 What is the impact of sharing of plain terms on execution time of VSAT?
RQ4 What is the cost of solving a plain formula on VSAT?
RQ5 What is the threshold of variants to solve, such that, VSAT's execution

time is reduced compared to directly operating incremental solvers?

The rest of this section presents our experimental methodology. We de-
scribe the solving strategies used in our comparisons in Sec. 5.1.2, describe the
data used in the evaluation in Sec. 5.1.3, and describe the statistical meth-
ods used to detect di�erences in the response data in Sec. 5.1.4. Finally, in
Sec. 5.1.5, we motivate and establish the experimental setup for each research
question in detail.

5.1.1 Prototype Implementation

We construct two systems to answer our research questions; a prototype vari-
ational solver and a benchmarking system for o�-the-shelf SAT solvers. Our
prototype variational solver, called VSAT, is written in the Haskell program-
ming language (Hudak et al., 1992). VSAT utilizes a widely used Haskell li-
brary called sbv (Erkok, 2011) to interface and instruct its base solver. The
sbv library provides a generic interface to SMTLIB2 conforming solvers, and
therefore possible base solvers; speci�cally Z3 (de Moura and Bjørner, 2008),
CVC4 (Barrett et al., 2011), Boolector (Brummayer and Biere, 2009), and
Yices (Dutertre, 2014).

The benchmarking system is a thin wrapper over the sbv library that se-
lects and manages the solver instance being benchmarked. Sbv exposes con-
�guration settings which run each base solver either incrementally, or non-
incrementally. We exploit these settings in the benchmarking system to craft
non-variational benchmarks to compare VSAT to. Therefore, this design (i.e.,
using sbv for the base solver communication in VSAT and for benchmarking
non-variational solvers) allows us to maintain the same interface to each o�-
the-shelf solver, while comparing VSAT to each solver run either incrementally
or non-incrementally.

5.1.2 Solving Algorithms

We de�ne four di�erent solving algorithms that input the same VPL formula
but solve it di�erently, thereby constituting the subject of comparison in the
experiment. We use the notation
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⟨formula⟩ → ⟨solver⟩

to describe, for each algorithm, whether the query formulas and solvers are
plain (p) or variational (v), respectively. The algorithms are: the brute force
case, p → p, the baseline case, v → p, the variational case, v → v, and the
slowdown case, p → v.

The p → p case solves a set of plain formulas (p) on a plain non-incremental

solver (p). We construct the p → p algorithm by con�guring the query VPL
formula to its variants before benchmarking begins. These formulas are then
sent to the non-incremental solver one-by-one. The solver is shut down and re-
initialized between runs, i.e., after solving each variant, to prevent the solver
from maintaining any learned information. The p → p algorithm gives insight
into the execution time of the non-incremental solvers if no solver information
and no terms are shared between SAT problems. This algorithm represents
the worst-case scenario.

The baseline case v → p runs a variational formula (v), variant by variant
on a plain incremental solver (p). The algorithm con�gures the query formula
to retrieve variants during benchmarking. Each formula is sent to the base
solver with the solver maintaining information between queries. This gives in-
sight into the slowdown incurred by con�guring a variational formula, and the
bene�ts of the internal caching in the base solver. This method corresponds to
approaches observed in the aforementioned variational systems; where sharing
is exploited through use of an incremental solver but not increased by our
more granular approach. This algorithm represents the experimental control
group.

The variational case v → v runs a VPL formula (v) on VSAT (v); it is the
subject of interest in most of the comparisons in the experiment.

Lastly, the slowdown case p → v solves a set of plain formulas (p) on the
variational solver (v). We perform the same pre-processing as for the p → p
case (i.e., con�guring the query formula to its variants) before benchmarking
begins but send each plain formula to VSAT instead of a plain solver. Since
the input to VSAT in this algorithm is plain, VSAT will accumulate the entire
formula to a single symbolic and then assert it into the base solver. This algo-
rithm provides insight into the cost incurred by the reduction engine because
only the reduction engine will process the plain input to a single symbolic.
The rest of the runtime will be internal to the base solver.

We construct a variational model for all algorithms because (1) we are
then able to provide descriptive statistics about the variational models from
real-world data, and (2) the storage of plain models is an orthogonal concern
to performance.

5.1.3 Data Description and Encoding

We compare VSAT to o�-the-shelf incremental and non-incremental SAT solvers
using real-world data from a previous study by Nieke et al. (2018). Nieke et al.
provide two real-world datasets: automotive02 and �nancialServices1, which
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encode the evolution histories of two feature models as propositional formulas.
9 We refer to these as the auto and �n dataset for the remainder of the paper.
Nieke et al.'s formulas collapse sets of C2 formulas to a single formula using
material implication on an SMT variable that represents a discrete moment in
time. A two-pass process was used to translate Nieke et al.'s formulas into a
single VPL formula each�one pass to parse to an internal representation and
another to detect and convert Nieke et al.'s temporal ranges to choices, nesting
the implied clauses into the true alternative, and placing a T in the false alter-
native. The two-pass process conserves Nieke et al.'s ordering of plain terms
and encoding. The two datasets di�er in their amount of variation. The auto
dataset encodes four monthly snapshots while the �n dataset encodes ten.
Hence, the auto's query formula represents 16 variants, while the �n query
formula represents 1,024 variants.10

5.1.4 Measuring Performance

Unless speci�ed, all results are a bootstrapped statistical average represent-
ing three raw measurements.11 To test for statistical di�erence between al-
gorithms we perform a Kruskall-Wallis test (National Institute of Standards
and Technology, 2020) followed by a pairwise Wilcox test (Wilcoxon, 1945)
with Holm-Bonferroni p-value correction (Holm, 1979) in the R programming
language (R Core Team, 2020) v4.0.3 and assume a 5% signi�cance level.

5.1.5 Research Questions in Detail

Having de�ned our subject systems, the algorithms used for comparison, and
the evaluation dataset, we now turn to an in-depth discussion of each research
question.

RQ1: Execution time as variants increase. The motivation for RQ1 is to ver-
ify that our approach is viable on realistic workloads; when the number of
variants is so high that hand writing the incremental solving procedure is dif-
�cult. Theoretically, we would expect that as the number of variants to solve
increases, the more e�ective our method of variational solving should become
because more reuse of shared plain terms would occur. Thus, we expect to
observe the total execution time of the variational solver to reduce compared
to incremental and non-incremental solvers when solving sets of SAT problems
expressed as a VPL formula.

9 https://gitlab.com/evolutionexplanation/evolutionexplanation
10 See the src/CaseStudy directory in https://doi.org/10.5281/zenodo.5543884 for the
implementation.
11 Using v0.2.5 of the gauge (O'Sullivan, 2009) library and v8.6 of the sbv (Erkok, 2011)
library with solver seeds set to 1729. All data was collected on a desktop running NixOS
20.09, with an AMD Ryzen 7 2700X CPU @ 4.0GHz, 32GB RAM. We used stack lts-15.7
(GHC 8.8.3), tested with RTS options �-qg� which enables parallel garbage collection and
disable frequency scaling of the CPU.

https://gitlab.com/evolutionexplanation/evolutionexplanation
https://doi.org/10.5281/zenodo.5543884
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The experimental setup for RQ1 is a statistical comparison of execution
time (wall time) between v → v, and each other algorithm as the number of
variants to solve increases. The key comparison is between the variational case
v → v, and the baseline case v → p. Should v → v show reduced execution time
compared to v → p as variants increase, then we can conclude our method of
variational solving is performant compared to the baseline case. The compar-
ison is a direct test of our methods, i.e., generating variational cores and then
solving them. v → p incrementally solves by con�guring the query formula
but does not use accumulation and evaluation, instead it con�gures and then
directly solves the variant. Thus, di�erences in execution time between v → v
and v → p are representative of time spent on accumulation, evaluation, and
solving a variational core.

To estimate the impact as variant count increases we �t the linear model
Execution Time = c ∗ Variant Count to the bootstrapped data where c is
the scaling constant factor. We report the adjusted coe�cient of determination
for the model and the model's estimate of the scaling factor for each algorithm.
There are two comparisons and thus two p-values. The �rst p-value veri�es that
the model's results are meaningful by checking if the model �ts the data more
accurately than noise. The second p-value results from testing if c = 0. Should
this p-value be under 0.05 then we may conclude that the scaling factor is not
0 (the null hypothesis) and thus the estimate returned by the linear model is
meaningful (the alternate hypothesis). All results for RQ1 were found using
Z3 as the base solver.

RQ2: Impact of the base solver on execution time. SAT solvers are complex
systems which utilize heuristics to optimize performance. Many solvers make
trade-o�s to optimize for particular problem domains. For example, the solver
Boolector is optimized to solve problems common in model checking, such
as SMT problems which contain quanti�er free �xed-size bit-vectors (Barrett
et al., 2016), and has consistently beat other SMT solvers in this area (Brum-
mayer and Biere, 2021). Therefore, we expect that certain solvers are more
performant for variational workloads than other solvers. Consequently, we ex-
pect that the execution time of VSAT will be a�ected by its base solver. Should
this e�ect exist then it would allow future implementations to choose a base
solver with good performance for their particular domain. Similarly, should the
e�ect be large, then it may indicate that a useful feature for future variational
solvers is the ability for a user to pick the base solver for their domain, or for
a subset of variants.

The experimental setup for RQ2 is the comparison of execution time of
v → v to itself with di�erent base solvers (i.e., the solvers supported by the
sbv library). Additionally, we compare the brute force case (p → p), and the
baseline case (v → p) with the supported solvers to observe the impact on
execution time for non-variational solvers.

RQ3: Impact of sharing on execution time. Previous research on variational
data structures (Meng et al., 2017; Smeltzer and Erwig, 2017) and a variational
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bytecode interpreter (Meinicke, 2014) observed that the amount of sharing,
and the distribution of variation, had an impact on execution time of these
systems. The sharing hypothesis is that execution time decreases when the
degree of sharing increases, because the variational system can reuse more
information when processing variants. Similarly, the distribution hypothesis

is, for a given domain, if contiguous segments of plain domain elements are
separated by few variational elements, then execution time decreases because
this grouping naturally allows more reuse across variants. For variational SAT
solving, the distribution hypothesis equates to slowdowns if the VPL formula
interleaves choices and single plain terms. For example, A⟨. . . , . . .⟩ ∧ p0 ∧
B⟨. . . , . . .⟩∧ p1 . . . where pi are plain terms. A well formulated formula would
have groupings of plain terms, which are easier to accumulate, and groupings
of variational terms, for example, A⟨. . . , . . .⟩ ∧ p0 ∧ p1 ∧ . . .∧ pi ∧B⟨. . . , . . .⟩ ∧
pi+1 ∧ pi+2 ∧ . . . ∧ pn.

Our motivation for RQ3 is to test the sharing hypothesis in the domain
of variational SAT solving. Theoretically, a high degree of sharing should pro-
duce a smaller variational core because segments of plain terms would reduce
to a single symbolic term, and thus lower the runtime costs of solving many
variants. Furthermore, if this e�ect is observed with VSAT, then knowing its
magnitude could lead to useful optimizations and motivate further experimen-
tation to test the distribution hypothesis. For example, one could calculate the
sharing ratio of the query formula during parsing, then if the ratio is above
a certain threshold the solver could re-order the query formula to improve
execution time.

The experimental setup for RQ3 requires calculating the sharing ratio of
query formulas and limiting the variants to solve to only variants which are
not arti�cial mixtures of Nieke et al.'s feature model versions. There are two
kinds of variants: version variants, which are variants that represent a speci�c
version of a feature model, and variants which are combinations of version
variants. We restrict the analysis to version variants because version variants
are real-world SAT problems, and are therefore a more accurate representation
of real-world workloads and sharing ratios.

We do not consider non-version variants for two reasons: First, because
non-version variants are combinations of version variants they are arti�cial
data and therefore are likely to be quickly found unsatis�able�a well known
phenomena in the SAT/SMT community (Gent and Walsh, 1994). Thus we
prevent introducing bias to our results and analysis through their omission.
Second, to our knowledge, the distribution of sharing ratios in real-world vari-
ational formulas is an open research question. If we included non-version vari-
ants then we would need to ensure that these variants form a valid sample,
i.e., they have a distribution of sharing ratios which is representative of the
population of real-world sharing ratios. Should we include version variants,
then our analysis of RQ3 gains a threat to validity that our results are based
on arti�cial VPL formulas which have a signi�cantly di�erent distribution of
sharing ratios than VPL formulas from real-world problems.
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However, there is still a major problem with restricting the analysis to
version variants, namely that sharing is only de�ned for VPL formulas which
contain choices. We cannot simply assess execution time of version variants
because these variants are necessarily plain and therefore have a sharing ratio
which is unde�ned. Instead, the sharing analysis is performed on VPL formulas
which represent consecutive version variants.

We construct these formulas by transforming the original auto and �n VPL
formulas (which represent every feature model version and all combination of
versions) to generate a set of VPL formulas. Each VPL formula in the set only
represents a consecutive pairing of feature model versions, and thus a pairing of
sequential version variants. We perform a pass over the original query formula
and replace choices representing non-consecutive versions variants with their
false alternatives (recall that these contain the value T).

For example, the auto data set has four unique dimensions corresponding
to analyses on four feature model versions. To retrieve the VPL formula that
represents only the version variants V1 and V2, we replace all instances of V3

and V4 with their false alternative. This results in a VPL formula that still has
choices with dimensions V1 and V2 but no choices with dimensions V3 and V4.
With this new VPL formula we can then instruct each solver to solve only the
true alternatives of each choice with a vc , ensuring that the solver solves the
version variants of V1 and then V2 and nothing else. This process is repeated
to produce the set of consecutive version VPL formulas for both data sets.
For example, another VPL formula in the auto dataset would be produced
by replacing V1 and V4 with their false alternative, yielding the VPL formula
which only represents V2 and V3.

Next we iterate over each VPL formula in each set to calculate each for-
mula's sharing ratio, and construct variational contexts to restrict the solvers
to consecutive version variants. For example, vcauto_V12 = exactly1({V1, V2})12
restricts the solvers to the �rst and second versions of the auto dataset. By this
process the auto dataset yields only three data points (and three consecutive
version VPL formulas), the changes from versions V1 to V2, V2 to V3, and V3

to V4. The �n dataset yields nine data points.
We post process the data by normalizing execution time for a given al-

gorithm to the baseline (v → p) to calculate speedup. We statistically assess
whether speedup correlates to the ratio of plain terms in query formula by
�tting a linear model, and repeating the aforementioned statistical tests. All
results presented for RQ3 are calculated using Z3.

RQ4: Slowdown of VSAT on plain query formulas. Thus far the research ques-
tions have focused on the impact of a sub-system (the base solver) or a property
of the query formula (the sharing ratio) on the execution time. RQ4 and RQ5
di�er in that they are concerned with the e�ciency of VSAT. RQ4 ask how
much overhead exists, and RQ5 asks when does this overhead begin to pay o�.
Our two-step approach should save execution time in the variational case (i.e.,

12 See the de�nition of exactly1 in Bittner et al. (2019).
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when solving more than one variant) since information is reused over many
variants. However, this same approach should cost time when solving a single
variant because nothing can be reused. RQ4's purpose is to observe if this cost
is detectable and determine its magnitude.

The experimental setup for RQ4 di�ers from previous research questions.
Each input to the variational solver, and thus to v → v, is a variant rather than
a VPL formula. Before benchmarking begins, we con�gure the query formulas
to produce the set of version variants for each data set. We again restrict
the analysis to version variants to avoid the e�ect of arti�cial data on our
results. Then, each algorithm receives the plain formulas as input rather than
the VPL formula. Normally, this results in a single bootstrapped average data
point per algorithm and per version variant, which is insu�cient for statistical
comparisons. Therefore, for RQ4, we retrieve the raw measurements from the
bootstrapped average and assess statistical di�erences identically to RQ3 but
do not �t any models to the data. All results, including variational models and
statistical analysis scripts, are available online.13

RQ5: Observing in�ection point of reduced execution time. RQ5 asks when

does the hypothetical overhead detected in RQ4 begin to pay o�. Our method
of variational SAT solving requires extra time and memory to maintain and
manipulate the symbolic cache, con�guration, and reduce the formula to a
variational core. This extra processing should initially produce a slowdown in
execution time until the cost can be paid o� through reuse and solving many
variants. Hence, we hypothesize that there exists an in�ection point in execu-
tion time for VSAT, where the number of variants to solve is so low that this
cost no longer dominates and the variational solver's execution time becomes

lower than the non-variational solvers. For example, it may be faster to simply
process two variants directly with the base solver and synthesize a variational
model rather than generating a variational core and solving the core. This
threshold is meaningful for future implementations of variational SAT solvers,
because it provides a metric to compare variational solver implementations
and provides a direct path to optimizations. For instance, a future implemen-
tation could choose to use a non-variational solver if the number of variants
to solve is under the threshold.

The experimental setup for RQ5 utilizes the same data and models from
RQ1. Using these models, we predict the variant count at which the execution
time for v → v is larger than each other algorithm. We �t a linear model in
order to predict execution time by variant count for variant counts that were
not directly measured in this experiment.

5.2 Results and Discussion

In this subsection, we present and discuss our results. We begin with de-
scriptive, non-performance results, and then discuss results for each research

13 https://doi.org/10.5281/zenodo.5546009

https://doi.org/10.5281/zenodo.5546009
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Fig. 12: Most plain models found to be unsatis�able. Only a small portion of
features ever changed to T.

question. We conclude the section with a discussion of when variational solv-
ing is an appropriate strategy compared to incremental solving, and threats
to validity.

Non-Performance Results. This section provides descriptive statistics of the
VPL encoded real-world data and concludes by reporting a substantive di�er-
ence in data collection compared to the conference version. The VPL encoded
data is our �rst glimpse at naturally occurring variation, thus we character-
ize the data to better understand the space of naturally occurring variational
SAT problems. In particular, we calculate the sharing ratio of each formula,
and calculate the ratio of constant features and satis�able models the varia-
tional model represents. We require the sharing ratios in order to answer RQ3,
and are interested in characterizing the variational models in order to inform
future variational model designs. However, we do not include the variational
model data in the answer for each research question because the performance
of variational models is an orthogonal concern to variational SAT solving.

The datasets yielded dissimilar query formulas: the auto query formula
consisted of 4,212 choice terms (not including terms in a choice's alternatives),
and 26,808 plain terms. In contrast, �n had 3,809 choice terms, and 1,441 plain
terms. Thus, �n had larger changes between product line versions. Figure 12
shows the ratio of unsatis�able models to total plain models, and the ratio of
constant features for each product line version (represented by variant count).
Note that variants increase exponentially (and thus so does the x-axis) because
each unique dimension in the query formula doubles the number of variants.

For both datasets, the number of satis�able models decreased as new ver-
sions were considered. There was a high degree of constant features; the ma-
jority of variables in each model never �ipped from their initialized value F,
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to T. Recall that a variable in the variational model is a feature in a feature
model. Thus, for these datasets and for most variants, few features needed
to be turned on in order for the feature model to be found satis�abile. Ad-
ditionally, this means these variational models are a compressed version of
the corresponding set of plain models. Whether this ratio of constant-features
generalizes to other software product lines is an open research question, how-
ever, this result implies that a variational model which only tracks the features
which change value between variants, could greatly improve performance for
subsequent queries on the variational model.

We believe variational models themselves are useful tools because they
permit product analyses without a SAT solver. Figure 12 shows such a purely
syntactic analysis: counting disjuncted clauses in the variational model as a
representation of satis�able plain models. These post-hoc analyses, may be
useful to feature modelers as they direct attention to impactful versions of the
feature model. For example, the change from V7 to V8 (128 to 256 Variants) of
�n clearly constrained the feature model as the number of unsatis�able models
increased from 50% to 80%.

Data collection for all research questions required 7 days, 6 hours, and 21
minutes to complete. This experiment quadruples the run time of the confer-
ence version, because we repeat the experiment with four base solvers. Due
to the amount of time required to generate the data, we limited the number
of raw measurements to 3. Thus, each data point presented in our results is
a bootstrapped average of 3 raw measurements. In contrast, the conference
version of this work used 56 raw measurements per data point. Our results
are inline with our former work even with the reduced sampling. We return to
this point and discuss the reproducibility and standard error of measurement
of our analysis in the threats to validity section.

Data Alg. 2 4 8 16 32 64 128 256 512 1024
auto p → p 1.25 3.51 3.43 2.86
auto v → p 0.96 3.26 3.24 2.62
auto p → v 1.23 3.25 3.14 2.55
auto Mean 1.15 3.34 3.35 2.68
�n p → p 3.43 4.13 4.11 3.57 3.39 3.03 2.79 2.61 2.39 2.11
�n v → p 3.40 4.20 4.07 3.51 3.35 3.01 2.77 2.61 2.55 2.16
�n p → v 3.39 3.98 3.86 3.32 2.90 2.40 2.19 2.01 1.81 1.58
�n Mean 3.41 4.10 4.01 3.47 3.21 2.81 2.58 2.41 2.25 1.95

Table 1: Speedup by variant count, where SpeedUp = Algorithm

v → v

RQ1: Execution Time as Variants Increase. Figure 13 and 14 show the total
execution time of each algorithm as a function of variants using Z3 as the base
solver. We see that the prototype solver (v → v) shows reduced execution
time compared to brute force (p → p), the baseline case (v → p), and the
slowdown case (p → v). We summarize Figure 13 and 14 in Table 1, which
presents speedup by variant count. Speedup is the ratio of execution time
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Fig. 13: (Auto) RQ1: performance as variants increase with Z3 base solver.
v → v shows a speedup of 1.15�3.5x for the auto dataset depending on count
of variants to solve.

Fig. 14: (Financial) RQ1: performance as variants increase with Z3 base solver.
v → v shows a speedup of 1.95�4.10x for the �n dataset depending on the count
of variants to solve. Overlapping x-axis labels omitted.
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Data Alg. 2 4 8 16 32 64 128 256 512 1024
auto p → p 0.17 7.11 14.3 26.7
auto v → p -.03 6.40 14.6 23.3
auto p → v 0.16 6.38 12.6 22.3
auto Mean 0.10 6.63 13.8 24.1
�n p → p 0.05 0.12 0.18 0.27 0.60 1.26 2.42 4.67 8.93 16.4
�n v → p 0.05 0.12 0.17 0.27 0.59 1.25 2.39 4.66 10.0 17.1
�n p → v 0.05 0.11 0.16 0.25 0.48 0.87 1.61 2.92 5.24 8.60
�n Mean 0.05 0.12 0.17 0.26 0.56 1.13 2.14 4.08 8.06 14.0

Table 2: Di�erence in execution time [min.] by solved variant count, where
Difference = Algorithm − v → v. A positive di�erence indicates v → v's
execution time was reduced compared to the considered algorithm.

Data Alg. Model p-value Adj. R2 c estimate c p-value Intercept
auto p → p 5.04× 10−11 0.95 152.87 5.04× 10−11 -154.04
auto v → p 2.77× 10−11 0.96 150.97 2.77× 10−11 -146.60
auto v → v 3.33× 10−08 0.88 45.76 2.22× 10−08 -12.63
auto p → v 8.74× 10−11 0.95 136.84 8.74× 10−11 -125.37
�n p → p 2.20× 10−16 0.96 1.96 2.00× 10−16 -7.03
�n v → p 2.20× 10−16 0.97 2.01 2.00× 10−16 -7.73
�n v → v 2.20× 10−16 0.96 0.82 2.00× 10−16 -18.55
�n p → v 2.20× 10−16 0.95 1.49 2.00× 10−16 0.68

Table 3: Linear model comparison between algorithms. v → v shows reduced
scaling factor estimate for both datasets compared to each other algorithm.

for each algorithm to v → v. The �Mean� row is the average of all speedups
for a given variant count. v → v demonstrates average speedups across all
variants ranging from an average speedup of 1.15x (two variants) to 3.35x
(eight variants). For �n, v → v shows average speedups ranging from 1.95x
(1024 variants) to 4.10x (four variants). The only case where v → v shows a
slowdown is the two variant case compared with v → p with a slowdown of
4%.

Recall that we hypothesized that as variant count increases, the more e�ec-
tive variational solving, and therefore v → v, should be. We �nd that there is
a peak speedup at the eight variant case for the auto dataset with an average
speedup of 3.35x, and the four variant case for the �n dataset with an average
speedup of 4.10x. After this peak, speedups monotonically decrease until the
maximum variant cases are reached.

This observation is an artifact of the speedup metric. Table 2 displays the
di�erence in execution time in minutes for each algorithm and variant count,
where di�erence is the arithmetic di�erence in execution time between an
algorithm and v → v. When considering the raw di�erence in execution time,
speedups are put into perspective. For example, the 1024 variant count of the
�n dataset shows a 1.58x speedup of v → v compared to p → v, while this
speedup appears small it equates to eight minutes of wall time, which is more
substantial than the 4.10x speedup that corresponds to 0.11 minutes of wall
time.
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Table 3 displays the output of the linear model for both auto and �n

datasets for each algorithm. Each linear model is statistically signi�cant with
a p-value of 2.2 × 10−16 for both datasets, furthermore we observe that the
estimates for each algorithm are similarly signi�cant. Table 3 directly answers
RQ1; the constant scaling factor of v → v is reduced compared to each other
algorithm for both datasets. For example, for the auto dataset, v → v's scaling
factor is 45.76 compared to v → p's at 150.97. Therefore, we conclude that
v → v scales more e�ciently than brute force, the baseline case, and the
slowdown case as variant count grows for both datasets. However, the v → v
algorithm still grows exponentially, since the linear model is well �tted to
both data sets and variant count (the x-axis) grows exponentially. Therefore,
as variants to solve grow linearly, v → v, like each other algorithm, grows
exponentially but with a reduced constant factor.

The comparison between p → v and v → v is also notable. Recall that
p → v performs accumulation/evaluation on a plain variant but does not gen-
erate and solve a variational core, which distinguishes it from v → v. From
Table 3, we see that p → v scales more e�ciently than both p → p and v → p.
For example, for the �n dataset, p → v shows a scaling factor of 1.49 compared
to 1.96 (p → p) and 2.01 (v → p). Thus, we conclude that accumulation/e-
valuation itself reduces execution time, yet most of the reported performance
gains come from generating and solving the variational core.

Fig. 15: (Auto) RQ2: performance as variants increase with each base solver.
v → v shows a speedup of 2.8�3.5x for the auto dataset depending on base
solver.

RQ2: Impact of the Base Solver on Execution Time. In the conference version
of this work, we cited that all of results were dependent on Z3 as a threat
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Fig. 16: (Financial) RQ2: performance as variants increase with each base
solver. v → v shows a speedup of 2.16�2.51x for the �n dataset depending on
base solver.

to validity. This research question addresses that threat and provides further
insight into RQ1 by using other base solvers.

Figure 15 and 16 show total execution time as a function of variants for
each algorithm and base solver, for both datasets, respectively. We �nd that
the results for RQ1 are robust across every tested base solver. We summarize
these results in Table 4 with Table 4a displaying the speedups and Table 4b
presenting the execution time for the most variational case. For the auto

DataSet Boolector CVC4 Yices Z3
auto 3.29 3.51 3.20 2.62
�n 2.44 2.51 2.50 2.16

(a) Speedup by solver for the most varia-
tional case; 16 variants for auto, 1024 for
�n. Where SpeedUp = v → p

v → v

Boolector CVC4 Yices Z3
10.38 12.31 10.39 14.40
13.15 17.11 12.15 14.74

(b) Time [min.] to solve with v → v by
solver.

Table 4: Time to solve and speedup of most variational case by solver.

dataset, v → v shows an average speedup of 2.60x across all variants. In the
most variational case (16 variants), the greatest speedup was 3.5x with CVC4
as the base solver. The �n dataset shows an average speedup of 4.70x 14. For
the most variational case (1024 variants), CVC4 again showed the greatest
speedup at 2.51x. These results are statistically signi�cant: v → v is di�erent
from every other algorithm for each base solver with p-values of 2.77 × 10−4

14 Due to extreme outliers (10x�15.1x speedup) from Yices when solving 2�32 variants.
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Data 2 4 8 16 32 64 128 256 512 1024
auto 7.26× 10−4 0.03 0.03 0.03
�n 0.04 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08

Table 5: P-values from Kruskal-Wallis test by variants and data set; a value ≤
0.05 indicates the base solver had a statistically signi�cant e�ect on execution
time. Red values indicate insigni�cance.

(v → p), 1.06×10−2 (p → p), and 1.92×10−2 (p → v) for auto and 1.62×10−5

(v → p), 1.92× 10−5 (p → p), and 1.70× 10−4 (p → v) for �n.
We observe substantial di�erences in execution time between base solvers.

For example, v → v with Boolector solved the 16 variant auto query formula
in 10.38 minutes compared to 14.40 minutes with Z3. Yices was consistently
the most performant base solver for all algorithms and all test cases. Yices
demonstrated a high degree of speedup with a reduction of 3.97 minutes and
2.21 minutes in execution time, compared to the execution times reported with
Z3. CVC4 is also noteworthy; CVC4 bene�ted the most from v → v for both
datasets with a speedup 3.51x (auto) and 2.51x (�n).

Although, these results seem substantial, we fail to �nd a statistically sig-
ni�cant e�ect from the base solver. Unfortunately, too much variance existed
in the aggregate dataset, i.e., the data set that combines auto and �n, to assess
an e�ect from the base solver. To reduce noise in the dataset, we performed an
additional Kruskal-Wallis test grouping the data by variant count and dataset.
Table 5 presents the p-values for this Kruskal-Wallis test. From this grouping,
we �nd that the base solver had a statistically signi�cant impact on execution
time for the auto data set and the two-variant case of the �n dataset. Simi-
larly, �tting a model to estimate the impact of the base solver on execution
time, even with this additional grouping, failed. Our model explained no more
variance in the dataset than random chance due to the limited data per data
set and per variant count.

While we have not been able to show a statistically signi�cant e�ect from
the base solver with this dataset, such an e�ect may still exist but requires
a more robust dataset to be detected. We nevertheless draw four conclusions
from this experiment: First, Yices demonstrated the second best speedup with
lowest execution times of all tested base solvers. We therefore �nd that Yices
is an attractive target as the base solver for future variational SAT solvers.
Second, some solvers are more sensitive to the variational solving algorithm
than others. In particular, CVC4 demonstrated more sensitivity, and therefore
speedup, compared to a less sensitive solver such as Z3. This implies that a base
solver which shows poor performance within the typical use case (v → p, i.e.,
an incremental context, and the solver is kept alive) may greatly bene�t from
the variational solving algorithm we have presented. Third, although the exact
reasons behind this sensitivity are open research questions, these results imply
that our use case (heavily exercising the incremental code paths) is peculiar
and thus, selection of a base solver based on only its typical non-incremental

performance may not be representative of its performance in the variational
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use case. Fourth, targeting the SMTLIB2 standard is a good implementation
strategy for future variational SAT solvers. We found that the ability to try
di�erent base solvers on the same problems is convenient. In addition, targeting
SMTLIB2 yields a modular design, allowing the variational solver the ability
to painlessly add new SMT solvers rather than re-implementing the variational
algorithm for each new base solver.

Fig. 17: RQ3: Performance as a function of plain ratio. We observe that sharing
positively correlates to speedup only for v → v, where % SpeedUp = v → p

Algorithm .

RQ3: Impact of Sharing on Execution Time. We con�rm the sharing hypoth-
esis in Figure 17. Figure 17 is a scatter plot of speedup as a function of sharing
ratio. Colored lines are linear models �tted to each algorithm, grey bands are
the linear model's con�dence intervals (95% con�dence). Only v → v and
p → p showed a statistically signi�cant �t to a linear model. Furthermore,
only v → v was found to be statistically di�erent from p → p and p → v, with
p-values of 6.95× 10−3 and 4.44× 10−6 and positively correlate speedup with
sharing ratio. We thus con�rm that sharing positively correlates to speedups
for the prototype variational solver for these datasets.

There are two sharing ratios of interest in the x-axis of Figure 17. The
�rst is 0.73 since this is the point where the v → v linear model meets the
p → p linear model. However, this point is an artifact of the analysis and
plotting. The linear model for p → p resulted in a p-value of 0.12, indicating
that the model did not predict the data better than chance, and therefore
the model is a poor predictor. 0.70 is the second interesting point because
this is the point where the models for v → v and p → v would meet had
the data and correlations continued. Conceptually, this point indicates the
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Fig. 18: (Auto) RQ4: Slowdown of v → v on plain formulas. We observe that
v → v incurs an average slowdown of 9% for auto, when solving a version
variant.

sharing ratio at which v → v begins to bene�t from a high sharing ratio. Thus,
the data is suggestive that low sharing ratios are detrimental to variational
solving. More sharing ratio data of real-world VPL formulas is required to be
conclusive. Unfortunately, to our knowledge, this is not a common metric in the
incremental SAT community. Thus, an avenue for future work on variational
SAT solving is to sample, aggregate, and report the distribution of real world
VPL formulas and sharing ratios.

This data is evidence that a dataset's sharing ratio is an important fac-
tor in the performance of a variational SAT solver. Theoretically this makes
sense; when the sharing ratio is high, the reduction engine produces a smaller
variational core. With a smaller variational core, more reuse of plain terms oc-
curs and thus computational time is saved in the base solver. Hence, another
avenue of future work is to leverage the laws of the variational logic to auto-
matically refactor input formulas to increase sharing. The consequences of this
observation will be particular to the application domain. For software product
lines, this means that any method to increase sharing between product line
versions or the representative SAT problems is desirable; this may be smaller
changes with respect to the entire feature model, more frequent snapshots of
the feature model, or syntactic manipulations to mitigate the occurrence of
new features.
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Fig. 19: (Financial) RQ4: Slowdown of v → v on plain formulas. We observe
that v → v incurs an average slowdown of 75% for the �n dataset, when
solving a version variant.

RQ4: Slowdown of VSAT on plain query formulas. Figure 18 and 19 display
the bootstrapped averages of each version variant, for each algorithm, and base
solver for the auto, and �n datasets, respectively. Given RQ3, and the sharing
ratios of �n, we expect VSAT to show slowdowns for �n. This is observed
in Figure 19 and is statistically signi�cant for all versions. For auto, only the
V1 version variant showed a signi�cant di�erence between the slowdown case,
p → v, and v → v, and between the slowdown case p → v, and the baseline case
v → p. Notably, v → v did not di�er from the baseline case, v → p. Graphically,
Figure 18 is suggestive of a statistically signi�cant di�erence between v → v
and other algorithms as v → v is substantially di�erent than other algorithms
for the V1 and V2 cases for each base solver. However, Figure 18 does not show
variance. With variance accounted for, the statistical tests conclude that the
di�erence is not statistically signi�cant, hence the discrepancy between the
plot and our statistical results. That p → v was statistically di�erent for V1

suggests particular sets of plain SAT formulas (and thus a single VPL formula)
may not respond well to the reduction engine, although the exact slowdown
will be dependent on the SAT problem.

We conclude that our method of variational solving does show substan-
tial slowdown outside of its intended use case, and is dependent on the query
formula. While this result is unsurprising, in combination with RQ3 it fur-
ther motivates future work to perform static analysis on the query formula
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Data Alg. 1 2 3 4
auto p → p -1.18 151.69 304.55 457.42
auto v → p 3.37 154.33 305.30 456.27
auto v → v 33.14 78.90 124.66 170.42
auto p → v 11.48 148.32 285.16 422.0
�n p → p -5.07 -3.11 -1.15 0.812
�n v → p -5.72 -3.71 -1.70 0.31
�n v → v -17.72 -16.90 -16.08 -15.26
�n p → v 2.17 3.66 5.15 6.64

Table 6: Linear model predications for one to four vaiants for both data sets
and each algorithm. v → v shows an in�ection point at one variant for auto
and no variants for the �n data set.

during an initial parsing or construction phase, and then dispatch an appro-
priate solving algorithm. Thus, future variational solvers may be envisioned
as a meta-SAT solver, i.e., it may choose to perform incremental solving, or
variational solving, or a brute force depending on the query formula.

RQ5: Observing In�ection Point of Reduced Execution Time. Table 6 shows
each algorithms' predicted execution time for one to four variants, using the
models summarized in Table 3. We �nd that v → v only shows an in�ection
point at one variant for the auto dataset, with a predicted execution time of
33.14 seconds, compared to 3.37 seconds for the baseline (v → p) and 11.48
seconds for the slowdown case (p → v). We �nd no in�ection point for the
�n dataset. The predicted negative times in the p → p row for auto and most
of the �n dataset indicate the breakdown of the model predictions. We �t a
linear model because a linear model explained more variance in the data (i.e.,
had a higher adjusted R2) than an exponential model. Yet, an exponential
model is theoretically better suited since incremental SAT execution time is
exponential in the number of SAT problems. Due to the linear model, the low
variant count predictions for the �n dataset have less certainty, for example a
90% con�dence interval around -16.08 (three variant case) of v → v ranges from
-34.4 seconds to 0.6 seconds, i.e., an interval 2.1x as wide as the prediction.
While the con�dence interval of the same point in auto ranges from 21.90 to
135.9, and interval 1.44x the predicted value.

From this data, we draw two conclusions. First, in�ection points in execu-
tion time exist but are heavily dependant on the dataset. Second, the in�ection
points are also dependent to the hardware. In contrast to the conference ver-
sion of this work�which directly observed in�ection points in the raw data at
4 variants for auto and 64 variants for �n�we �nd that the predicted in�ec-
tion point is very low, at only a single variant for auto. We suspect that this
discrepancy is due to convolved factors in the benchmarking system and hard-
ware. This analysis was performed on a system with 32GB of RAM, and thus
the benchmarking system, once running, never queried to disc. In contrast, the
conference version benchmarking system had access to only 500Mb of RAM,
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therefore system operations such as paging were convolved and uncontrolled
in that data hypothetically leading to an increase in constant time costs.

Understanding the in�ection points is a high value item for future research.
Future solvers could make direct use of them by analyzing a query formula to
predict if a variational solver is likely to produce a speedup, if not then the
solver could employ a standard incremental solver. Similarly, researchers could
use the in�ection points as a metric to compare variational solver implemen-
tations on the same dataset. Presumably, this would serve as a guiding light
to allow researchers to test which implementation strategies scale and which
do not. For example, if one solver demonstrates a lower in�ection point on the
same data, then that solver exhibits reuse at earlier variant count. Thus, by
understanding the determining factors in the in�ection point, and by using
the in�ection point as a metric, researchers gain a method with which to make
progress in this domain.

Summary. We have found that the theoretical result of saving work by accu-
mulation/evaluation, generation of a variational core, and solving the varia-
tional core translate to a reduction in execution time for two real-world data
sets. From RQ1 we conclude that our approach is viable for some real-world
workloads and that the majority of the reduction in execution time is derived
from using variational cores. We hope that the concept of variational cores,
as demonstrated in this work, can be useful to researchers in other variational
domains.

Unfortunately, our data set lacked the statistical power to estimate and
determine an e�ect on execution time from the base solver. However, our
results are suggestive that the base solver has an impact, and that impact is
particular to the speci�c base solver. Thus, RQ2 is inconclusive and left for
future work when a more robust data set is in hand.

For RQ3 we sought to test the sharing hypothesis in the domain of varia-
tional SAT solvers. We have found strong evidence that the sharing hypothesis
occurs in variational SAT solving. This result continues the accumulation of
evidence that sharing ratios in variational systems are an important factor to
the performance of these systems.

RQ4's purpose was to �nd and measure the overhead incurred by vari-
ational solving by solving plain formulas with VSAT. Such an overhead was
observed and statistically meaningful for the �n dataset and one version of the
auto dataset. If the constant time costs of variational SAT solving began to
dominate execution time, then we would expect to observe a slowdown across
all version variants. However this was not observed, that some version variants
in the auto dataset did not show a slowdown suggests that the properties of
a variant can have such a large impact on execution time that the overhead
does not dominate. These results are suggestive of a variational phase change
transition, the existence of which is an open question for future research.

In RQ5, we were primarily concerned with verifying the existence of an
in�ection point in execution time. We conclude that this in�ection point does
exist based on the models in this experiment and by direct observation in
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the conference version of this work. However, this leaves a more interesting
problem: understanding the factors which produce the in�ection point. In this
work, we do not solve or address this problem, but believe that the threshold
is dependent on numerous factors, such as the size and sharing ratio of query
formula, the base solver, and the underlying hardware. Naturally, a path for
future work is to identify these determining factors and model the variant
threshold for a given query formula.

The results for RQ4 and RQ5 suggest that variational SAT solving should
be used in conjunction with incremental SAT solving. For example, incre-
mental SAT solvers could have a variational engine which is used when the
input problem is well suited to variational SAT solving, completely invisible
to the end-user. Or if the user inputs a VPL formula, then this solving engine
would be the default method. Additionally, incremental solvers could employ
a graduated approach, where the solver chooses between an engine which uses
accumulation and evaluation, but does not use variational cores and a fully
realized variational SAT solver.

Practicality. We have shown that variational SAT solving does reduce exe-
cution time when solving sets of related SAT problems. Unfortunately, our
approach relies on encoding the set of SAT problems into a VPL formula.
This is especially troubling in light of RQ3, which heavily implies that a poor
encoding can have detrimental e�ects on the execution time of the variational
solver, because the sharing ratio might be arti�cially low. Thus, a major and
central question for future work is if the VPL formula can be automatically
constructed in practice. Automated VPL formula construction is an open re-
search question at this time, although there are several possible approaches we
have identi�ed. Since automated VPL construction is not the primary concern
of this work, we leave it for future work and address several possible algorithms
in Section 7.

It is important to note that this experiment only tests our methods on a
small portion of real-world variational datasets. A variant count 10 times larger
than that of �n is not only reasonable but also likely, and so we speculate what
the performance of variational SAT solving will be with variant counts greater
than 10,000 variants. This obviously requires further experimentation, but we
hypothesize that the behavior is dependant on the sharing ratio of the VPL
formula, the variant count, and the di�culty of the variant SAT problems.

If the sharing ratio is high, then based on RQ3 and RQ5 we would expect
the speedup to continue to increase as the variants increase, because work is
reused for each variant. In contrast, consider the case where the sharing ratio
is zero or very low. In this case, we would expect the work done in generating
and optimizing a variational core to never pay o�, thus the solver would incur
a slowdown due to the additional constant-time costs for each variant.

Similarly, the variant count and di�culty of solving each variant are im-
portant factors. There are four hypothetical scenarios, which are separated
by answering the questions: �Is the execution time dominated by variational
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core generation and optimization� and �How much time do variational core
optimizations have to pay o��.

Given a variant count of n, a variational solver should only generate log2 n
variational cores. In the �rst scenario, n is low and the variants are easy to
solve, such as in this experiment. In this scenario, there is not much time
for the variational work to pay o�, and the execution time is not dominated
by the di�culty of each variant's SAT problem. Thus there is similarly not
much time for the variational work itself. Instead, it is more likely that the
variational work�generating and optimizing the variational cores�will be-
come an important or even dominating factor in execution time. So it may
not be worthwhile to do the variational work, instead it may be more e�cient
to directly solve the variants (as discussed in RQ5). Or, one might design a
variational solver which detects this case and spends less time on variational
core optimizations; since these optimizations have a lower probability to pay
o�. However, our results directly contradict this expectation; even when n is
low and variants are easy to solve, generating variational cores still paid o�
for our test datasets (RQ1).

The second scenario is the most uncertain, n is low but the variant SAT
problems are di�cult. In this scenario, the cost of the variational work is
low because execution time is likely to be dominated by solving the variant
SAT problems. This provides more opportunity for the variational solver to
perform aggressive optimizations. Although, there are not many variants for
optimizations to pay o�. We expect that any simpli�cation to the variant SAT
problem would produce a speedup because this is the dominating factor in
execution time. However, this case is a balancing act, we need to do enough
variational work to reduce the SAT time per variant, but we do not want to
spend so much time on optimizations that the variational work becomes a
dominating factor in execution time.

The third and fourth scenarios are similar; only now we assume that n is
large which provides more time for variational work to pay o�. In the third sce-
nario, n is large but variant SAT problems are easy to solve. In this scenario,
execution time should be dominated by generating the variational cores and
driving the base solver to a variant to begin the SAT procedure. In contrast
to the �rst scenario, generating and optimizing a variational core is still likely
to pay o� because even a small speedup per variant, when applied over many
variants, will reduce total execution time. Similarly, optimizations should min-
imize the variational cores by increasing sharing. An increase in sharing should
reduce the work required to drive the base solver to a variant because smaller
variational cores require less traversal by accumulation, evaluation and choice
removal. Therefore, we suspect that variational solving should still be perfor-
ment in this scenario.

The fourth scenario is the best of both worlds; n is assumed to be large
and the variants' SAT problems are assumed to be di�cult. In this scenario
the variational solver has enough time to generate and optimize the varia-
tional cores because execution time should be dominated by the variant's SAT
problems. Similarly, this work has ample opportunity to pay o� because the
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variant count is high. This is the crucial di�erence between this scenario and
the second scenario; more time can be allocated to optimizations because the
execution time is assumed to be dominated by the variant's SAT problem.
Optimizations should improve the sharing ratio of the variational cores, but
because the variant problems are di�cult, any improvement to sharing may
carry more information in the base solver forward to future variants, and pro-
duce a large reduction in work for the base solver. Thus, in this scenario, one
could design a variational solver to detect this case and decide to more aggres-
sively optimize because the payo� could be large, while the cost is small and
likely non-dominating in execution time.

While our results are promising, variational SAT solving is not a general
improvement over incremental SAT solving. Rather, in practice it should be
viewed as a specialized improvement over incremental solving for classes of
problems that satisfy two criteria. First, the set of SAT problems must be
known in advance and have shared terms so that a VPL formula can be con-
structed to solve. Of course, one could use a variational SAT solver on a set
of SAT problems which have no shared terms, but we would not expect vari-
ational solving to outperform incremental solving in such a case as shown in
RQ4. Second, the number of SAT problems the user is interested in solving
must be large. One may view variational SAT solvers as an optimizing com-
piler over incremental solvers. Thus, if the number of problems to solve is
low, then the bene�ts of variational SAT solving are reduced (i.e., automating
the solver interaction, optimizing the SMTLIB2 program, and automatically
tracking the resulting models). Similarly, if the number of SAT problems is low
then the speedup in execution time is less meaningful, even though one would
no longer need to hand write the incremental programs. Therefore, one should
view incremental SAT solving as a more general approach to solving sets of
SAT problems, and variational SAT solving as a specialization of incremental
SAT solving suited for use when the set of SAT problems is known, large, and
consists of related problems.

Threats to Validity. Our results are subject to several threats to validity. No-
tably, we are unable to make absolute performance claims because our study,
with only two product lines, may not be representative. To mitigate this we
reused real-world data from Nieke et al.'s previous study (Nieke et al., 2018)
and chose dissimilar product lines. We inherit encoding-based threats to valid-
ity by reusing Nieke et al.'s formulas but ensured each algorithm experienced
identical ordering of plain terms as described in Sec. 5.1.4. Furthermore our
results, and our prototype solver are based on the widely used Haskell library,
sbv. While this is a likely to be a common implementation strategy for a vari-
ational solver (i.e., a solver built using a library rather than a foreign function
interface, similar to tools built on top of Sat4j (Le Berre and Parrain, 2010))
it is nonetheless a threat to validity as our prototype directly depends on
this library and its performance characteristics. To mitigate this threat we
maintained the same version of sbv throughout the experiment, employed its
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interface to interoperate for each base solver, and enforced the same code paths
through the library.

Due to the need for reduced measurements, our results are subject to the
threat of validity incurred by random chance. It could have been the case
that our results are merely statistical aberrations. We mitigate this threat
in two ways. First, we aggressively employ statistical testing to detect sta-
tistically signi�cant di�erences in the data which accounts for the number of
comparisons and the size of the dataset. These tests are the reason RQ2 is not
conclusive, even though our results are suggestive. Second, we measured the
standard error of measurement by sampling the two variant and four variant
case of v → v for the �n data set 56 times and did not include this data in Sec-
tion 5.2. We found that the sampling distribution is tightly distributed about
its mean. The two variant �n case showed a standard deviation of just 7.7
milliseconds with a mean of 4.096 seconds, and the four variant case showed a
standard deviation of 29.59 milliseconds with a mean of 11.37 seconds, as re-
ported by the gauge library. These results indicate that the reduced sampling
of the distribution does still provide reasonably accurate data. In addition to
this result, our results in this version of the work align with those from the
conference version (Young et al., 2020), thereby increasing our con�dence that
the reduced sampling was not problematic.

We have concluded that in�ection points exist in the execution time of a
variational solver with RQ5. However, there exists is a threat to validity be-
cause our conclusion relies on the �tted linear model over the sample datasets
and subsequent prediction of the in�ection point rather than a direct observa-
tion in the raw data. We had expected to observe this in�ection point directly
in the raw data, as this was the case in the conference version of this paper.
However, we believe the result is still valid due to the high quality of �t, the
low measure of standard error of the linear models, and the direct observa-
tion of the in�ection points on the same data in the conference version of this
work. Taken as a whole, this increases our con�dence in the result, although
an experiment speci�cally designed for RQ5 would be more appropriate.

We have demonstrated the scalability claim with RQ1, and shown the
translation and automation of incremental solving in Section 4. However, our
results depend on a VPL formula as input, and it is possible that our encoding
of Nieke et al.'s data was malformed. To mitigate the threat of VPL formula
construction, we took several steps. We hand-crafted a custom parser to parse
the set of SAT problems from Nieke et al.'s data. Using this parser, we parsed
all of Nieke et al.'s data, checking for any failed SAT problems and ensuring
that the number of successfully parsed problems matched the number of prob-
lems Nieke et al. reported. From the set of SAT problems, we created a VPL
formula to represent the whole set in a post processing phase. Nieke et al.'s
dataset is variational in its temporal ranges, so we post processed the set of
SAT problems to create unique choices according to these temporal ranges, and
then merged this set into a VPL formula. Then, we veri�ed that the number of
unique dimensions matched the number of feature model versions reported by
Nieke et al. With the VPL formulas that represented all variants of a given data
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set, we projected smaller VPL formulas through con�guration and restricted
the variational solver with a variation context to ensure that the solver did not
solve more variants than necessary. Lastly, during benchmarking, we statically
analyzed each query formula to the solver before benchmarking, recording the
number of choices, number of unique dimensions, the number of plain and vari-
ational terms, and the number of variants the formula represented. With this
data we veri�ed each benchmark was correctly benchmarking its respective
VPL formula for each algorithm.

We do not provide a proof of the soundness of our methods. We mitigate
this threat in several ways: We performed property-based testing (Claessen
and Hughes, 2000) on our prototype and veri�ed that a satis�able variant was
found to be satis�able across all algorithms. In addition, we de�ne a property
that ensures that for each plain model p, found with p → v, v → p, and
p → p, an identical model p′ was found by substituting p on the variational
model returned from VSAT. We performed the property-based tests with 3,000
generated VPL formulas, �nding no counter-examples.

6 Related Work

Similar Solvers, Related Techniques. Our work is most similar to Visser et al.
(2012), which also constructs a SAT solver that exploits shared terms and
prevents redundant computation. However, the projects di�er in important
ways. Visser et al.'s solver is oriented for program analysis and does not use
incremental SAT solving. Rather, it uses heuristics to �nd canonical forms
of sliced programs, and caches solver results on these canonical forms in a
key-value store (Labs, 2020). In contrast, variational SAT solving is domain
agnostic, solves SAT problems expressed in VPL, returns a variational model,
and uses incremental SAT solving.

Variational SAT solving is the latest in a line of work that uses the choice
calculus to investigate variation as a computational phenomena. The choice
calculus has been successfully applied to diverse areas of computer science,
such as databases (Ataei et al., 2021a,b, 2017, 2018), graphics (Erwig and
Smeltzer, 2018), data structures (Meng et al., 2017; Walkingshaw et al., 2014;
Smeltzer and Erwig, 2017; Erwig et al., 2013), type systems (Campora III
et al., 2018a,b; Chen et al., 2014b, 2012), error messages (Chen et al., 2017;
Chen and Erwig, 2014; Chen et al., 2014a), variational execution systems (Chen
et al., 2016; Wong et al., 2018; Meinicke, 2014) and now SAT solving. Our use
of choices is similar to the concept of facets by Austin and Flanagan (2012)
and faceted execution by Schmitz et al. (2018); Micinski et al. (2020); Austin
et al. (2013), in that both choices and facets syntactically demarcate terms in
an object language that must be specially handled, and yet must also operate
with terms outside of the choice or facet. Facets have also been successfully
applied to information-�ow security and policy-agnostic programming. Our
idea of representing variation in a non-traditional formula (a VPL formula in
our case) is similar to the approach by Mauro (2021), which uses quanti�ed
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boolean formulas to encode variation, and quanti�ed boolean SAT solvers to
detect anomalies in context-aware feature models. Notably, their approach has
the bene�t of avoiding incremental SAT solving altogether.

Our work is similar in spirit to incremental SAT solving itself, and we
argue that one could view incremental SAT itself as a variational system.
Thus, we provide a small literature review. First de�ned by Hooker (1993),
incremental SAT was devised as a solution to veri�cation and optimization
problems in electronic design automation such as covering problems (Coud-
ert and Madre, 1995), detecting delay faults (Kim et al., 2000a), and model
checking (Clarke et al., 1986). The �rst incremental solver to gain traction was
SATIRE by Whittemore et al. (2001). Eén and Sörensson (2004) made a ma-
jor advance in incremental SAT with MiniSat by de�ning, documenting, and
popularizing the implementation techniques required for an incremental SAT
solver. MiniSat ((Eén and Sörensson, 2003) (Eén and Sörensson, 2004)) was
the result of lessons learned from work on two other solver's called SATZOO

and SATNIK. MiniSat simpli�ed the existing notions of incrementality from
the state of the art incremental solvers SATIRE and PBS (Aloul et al., 2002)
and combined propagation strategies from the Chaff (Moskewicz et al., 2001)
solver such as con�ict-driven backtracking (Zhang et al., 2001) and dynamic
variable ordering (Moskewicz et al., 2001). These combinations lead to a solver
that was performant, and whose implementation was small and communica-
tive. That same year, the �rst SMTLIB standard would be proposed by Tinelli
(2003) although incremental SAT commands would not be incorporated until
the 2.0 version (Barrett et al., 2010) in 2010, with the addition of an assertion
stack developed by Kim et al. (2000b).

Additionally, one could conceive of variational SAT solving as an satis�ability-
modulo theories (SMT) background theory (Barrett and Tinelli, 2018; Biere
et al., 2009) that could be included in SMT solvers, rather than as a system
which includes a SAT/SMT solver as a black box reasoning engine. This ap-
proach is feasible but is only a di�erence of implementation strategy, and we
expect that a product ready variational SAT solving would be implemented
this way. Since, the primary goal of this work was to explore, formalize, and
prototype variational SAT solving, we chose to design the variation solver as
a set of rule based transformations over a new logic, that o�oads SAT prob-
lems to a reasoning engine. This has many bene�ts. First, it creates a clean
separation between the variational solver and the SAT/SMT solver. From a
software engineering perspective, this separation increases the cohesion of each
sub-system and limits the coupling of the variational solver to the base solver.
Second, because our design has strong separation of concerns, our prototype
can replace base solvers or even use several di�erent base solvers at the same
time, for di�erent variants; such a capability would not be possible without
this design. Similarly, strong separation of concerns allows us to experiment
with parallel and concurrent variational solving, where variants are solved by
di�erent base solver instances, at the same time. Third, our design does not
disallow implementing a variational SAT solver as an SMT theory. Rather,
we believe that translation to an SMT theory, based on our formalization, is
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straightforward precisely because we have formalized variational SAT solving
as a set of rule based transformations over a new logic. Thus, it is reasonable
that a future variational SAT solver is implemented as a SMT theory just as
we have suggested in Section 5.2.

Applications for Variational Solving. Software variability, as explored in this
paper, is a natural application domain for our work. The variability of SPLs
or con�gurable software is often reduced to propositional logic (Batory, 2005;
Czarnecki andW¡sowski, 2007; Mendonça et al., 2008) for analysis purposes (Be-
navides et al., 2010; Thüm et al., 2014; Galindo et al., 2019). Many analyses
have been implemented using SAT solving such as Thüm et al. (2014), in-
cluding feature-model analysis (Benavides et al., 2010; Galindo et al., 2019),
parsing (Kästner et al., 2011), dead-code analysis (Tartler et al., 2011), code
simpli�cation (von Rhein et al., 2015), type checking (Thaker et al., 2007), con-
sistency checking (Czarnecki and Pietroszek, 2006), data�ow analysis (Liebig
et al., 2013), model checking (Classen et al., 2013), variability-aware execu-
tion (Nguyen et al., 2014), testing (Carmo Machado et al., 2014), product
sampling (Medeiros et al., 2016; Varshosaz et al., 2018), product con�gura-
tion (Sayyad et al., 2013), optimization of non-functional properties (Siegmund
et al., 2012), and variant-preserving refactorings (Fenske et al., 2017). While
each of these analyses gives rise to multiple SAT problems for even a single
analysis run, the authors typically do not discuss how they are solved. We
argue that many could bene�t from variational solving.

More generally, any scenario that involves solving many related SAT prob-
lems, and where all of these problems are known or can be generated in ad-
vance, is a potential application for variational SAT solving. Such situations
arise in program analysis (Visser et al., 2012), and especially in speculative

program analyses that involve generating and exploring huge numbers of vari-
ations of a program, for example, as in counterfactual (Chen and Erwig, 2014)
and migrational (Campora III et al., 2018b,a) typing. Furthermore, we believe
that variational solving could provide a basis for similar speculative analyses
on feature models.

E�cient Reasoning About Software Variability. Since SAT solving is so com-
mon in software variability applications, many strategies have been developed
to reduce e�ort in this domain.

Similar to variational formulas, Nieke et al. (2018) encode several versions
of a feature model in a single formula. We reuse their benchmark as part
of our evaluation as described in Section 5.1; a direct comparison with their
approach is nuanced and discussed in Section 5.2. While their work focuses on
feature-model analysis only, variational formulas and variational solving can
be applied to many application areas.

In the context of family-based type checking (Thüm et al., 2014), others
have discussed merging multiple SAT problems into one. Most work in this area
use a local approach where SAT problems are solved as they are encountered
during typing; in contrast, global approaches collect SAT checks into a single
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problem that is solved at the end of the analysis. While the global approach
improves e�ciency by increasing reuse of learned clauses in the solver, it loses
the ability to identify which variants contain type errors (Apel et al., 2010;
Huang et al., 2011). Variational solving can achieve the reuse bene�ts of the
global approach without sacri�cing the precision of the local approach.

Since the size of SAT problems in software variability applications is often
dominated by the feature model, researchers tried to reduce the size of SAT
problems by delaying consideration of the feature model until after the anal-
ysis and only using it to rule out false positives (Bodden et al., 2013; Classen
et al., 2013; Liebig et al., 2013), a technique known as late feature-model con-
sideration (Thüm et al., 2014). Bodden et al. (2013) found that this technique
increases the overall e�ciency of static analysis (Bodden et al., 2013), while
Classen et al. (2013) found that it actually decreases e�ciency of family-based
model checking. Variational solving is orthogonal to these approaches since
the feature model can be excluded from a variational formula and then used
later to rule out false positives.

Feature models can also be reduced in size to speed up analyses, for
example, by slicing (Acher et al., 2011; Krieter et al., 2016) or decomposi-
tion (Schröter et al., 2016). It is largely unexplored how much such reductions
can improve e�ciency, but the analysis will still involve multiple similar SAT
problems, which can bene�t from variational solving.

A �nal approach is to avoid SAT problems by using modal implications
graphs (Krieter et al., 2018), which support faster reasoning. The idea is to
encode as many software variability constraints as possible in such graphs,
then use a SAT solver only for the remaining constraints. The construction
of modal implication graphs already requires solving SAT problems, but this
cost is amortized if many SAT queries will be solved during the analysis, as
Krieter et al. (2018) found for con�guration processes.

7 Conclusion and Future Work

Variational SAT solving o�ers numerous advantages over current methods.
Variational models, as solutions to variational SAT problems are a �exible,
compressed representation that enables post-hoc analyses. Through the use
of a VPL formula, variational solving provides a domain agnostic, automated
approach to use an incremental solver to e�ciently solve sets of SAT problems.

We have demonstrated that sharing is an important factor in variational
SAT solving. While the magnitude of its e�ect is unknown, our analysis forms
a foundation for future research. For feature modelers, variational SAT solving
o�ers the practical bene�ts of a faster and more �exible analysis tool. Out-
side the domain of software product lines, variational SAT solving provides
a framework and logic that directly represents variation irrespective of the
application domain, thus providing a new method to study variation itself.
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There are several avenues of future work. In this section we explore two of
the promising directions: (1) extending the formalism to SMT solving and (2)
automating the construction of VPL formulas.

We view extending the formalism and implementation to SMT solving and
automatic VPL formula construction as the highest value direction of future
work. Extending to SMT solving is straightforward, and is complete at the time
of writing!Young (2021). In our prototype variational SMT solver, VPL is ex-
tended to consider numeric expressions. Numeric expression are introduced to
the variational formula through new inequalities such as ≤ . Then appropriate
cases for each new relation are added to accumulation, evaluation and choice
removal. The new cases include new rules over arithmetic relations such as,
+, −, ∗ and inequalities, but the semantics of accumulation, evaluation and
choice removal are exactly the same as presented above. Variational models
are also extended to contain values other than Booleans. The models use the
ite (if-then-else) function from the SMTLIB2 standard to create a sequence
of heterogeneous values. The values are selected for by the if-condition, which
is the variant context for the value in the then-case. The else-case becomes
a pointer to the rest of the sequence, and the �nal else-case is the initialized
value for each variable. With this strategy, we achieved a variational SMT
solver extended with all SMTLIB2 standardized theories.

Incrementally and automatically constructing VPL formulas is the second
major avenue of future work. The requirement to provide a VPL formula
creates a high barrier to entry for end-users. Thus, if the VPL formula can be
automatically constructed then usability of the tool increases. We believe that
constructing a VPL formula as new variants occur is possible in theory (as
described in Section 3). However the problem is far from trivial. From RQ3,
we observed that the sharing ratio was a signi�cant factor in performance.
Thus, the problem is not simply devising an algorithm which inputs a set of
C2 formulas and produces a VPL formula. Rather, the solution must deliver
a VPL formula which also maximizes sharing!

The problem of incrementally building a VPL formula reduces to taking
two candidate VPL formulas (each of which could be plain) as input, and re-
turning a �tness metric; where a high result implies a high degree of sharing
between the candidates. With this �tness metric, well suited pairs of combina-
tion could be constructed to maximize sharing. One could then imagine a top
down approach which combines two formulas element by element wrapping
non-shared sub-terms in a unique choice, and then apply the rules in Section 3
to increase the sharing ratio.

However there are two considerations. The �rst consideration is the com-
putational complexity of �nding the �tness metric between two arbitrary VPL
formulas. There are several possible algorithms, such as string edit distance,
and graph edit distance over the abstract syntax tress of both candidate formu-
las. String comparison algorithms such as Levenshtein distance (Levenshtein,
1966) or Hamming distance (Hamming, 1950) are promising as both have
implementations which run in polynomial time. Graph edit distance is more
straightforward, and would not require serialization of the formulas to strings.
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However, graph edit distance is NP-Complete with an approximate solution
that is APX-hard (Lin, 1994). Although the computational complexity is high,
most graph edit distance algorithms work well in practice, and it is likely that
our use case is simpler than the worse case, such as the enormous graphs found
in social networks. Similarly, it is likely that this domain would signi�cantly
bene�t from heuristics such as longest common sub-string because VPL with
a long shared segment of terms are likely to have other shared terms separated
by choices.

The second consideration is the number of comparisons to make with the
�tness calculating algorithm. To give some insight into the problem, given a
set of n SAT problems, we want to create a new set of ⌈n

2 ⌉ pairs, combine each
pair into a VPL formula with unique choices, and recursively process the new
set until we arrive at the base case of a single VPL formula. But this means
that there are n!

2(n−2)! comparisons to make at each recursive step. Thus,
a single iteration of this algorithm with an initial set of 10 formulas would
incur 45 comparisons, 100 problems would incur 4,950 comparisons, and 1,000
problems would incur 499,500 comparisons. Furthermore, we can calculate the
total count of comparisons required to arrive at the base case by summing the
number of comparisons at each recursive level. For an initial set of 10 problems,
the algorithm would make 45 ( 10!

2(8)! ) in its �rst step, then 10 ( 5!
2(3)! ) and �nally

three 3 ( 3!2 ! ) comparisons to reduce the inital set to a single VPL formula.
While this process incurs substantial computational complexity, these upper
bounds are likely to be reduced using approximation algorithms or by sorting
the set before processing, although the e�ect of each is left to future work.
Fundamentally, this problem is a search problem with the �tness metric as a
heuristic. Thus, we believe signi�cant progress could be made in automating
the construction of VPL formulas by using high performance heuristic-based
search algorithms such as A∗, beam search, or Alpha-beta pruning (Russell
and Norvig, 2009).

Both directions of future work require more data for an evaluation. For
variational SMT solving, we require more data sets to repeat the analysis
for each theory. Interactions between variation and each SMT theory are an
open question, and it could be the case that the interaction between variation
and a particular theory (e.g., �xed size bit vector theory) produces harder
SMT problems than its plain counterpart. For algorithms which automati-
cally construct VPL formulas, we require a set of realistic SAT formulas, and
by extension SMT formulas. Accumulating this data is feasible; our only con-
straints are that the set of SAT problems are not synthetic, and that there
is some sharing between the problems in the set. Ideally, the amount of shar-
ing would range from no sharing, to full sharing in the SAT problems. Such
a data set would provide valuable information on the distribution of sharing
ratios in real-world problem sets and would give insight into variational SAT
performance at a lower sharing ratio than the minimum found in this work
(0.7). Thus, the immediate goal of our future work is to accumulate, record,
and make available a robust dataset of related SAT/SMT problems.
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