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Abstract
Many problems require working with data that varies in its

structure and content. Current approaches, such as schema

evolution or data integration tools, are highly tailored to spe-

cific kinds of variation in databases. While these approaches

work well in their roles, they do not address all kinds of

variation and do address the interaction of different kinds of

variation in databases. In this paper, we define a framework

for capturing variation as a generic and orthogonal con-

cern in relational databases. We define variational schemas,

variational databases, and variational queries for capturing

variation in the structure, content, and information needs of

relational databases, respectively. We define a type system

that ensures variational queries are consistent with respect

to a variational schema. Finally, we design and implement

a variational database management system as an abstrac-

tion layer over a traditional relational database management

system. Using previously developed use cases, we show the

feasibility of our framework and demonstrate the perfor-

mance of different approaches used in our system.

CCS Concepts: • Information systems → Relational
database model; • Software and its engineering → Soft-
ware product lines.

Keywords: variation, variational data, relational databases,
choice calculus, software product lines, type systems
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1 Introduction
Managing variation in databases is a perennial problem that

appears in different forms and contexts [8, 11, 14, 22, 44]. In
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databases, variation arises when several database instances,

which may differ in schema, content, or constraints, concep-

tually represent the same database. Existing work on data-

base variation focuses on specific kinds of variation such as

schema evolution [4, 13, 32, 34, 42], data integration [19], and

database versioning [12, 26]. These works provide solutions

specific to the kinds of variation they address, but do not

provide a general-purpose solution to managing variation

in databases. This is a problem since new kinds of varia-

tion often arise and different kinds of variation can interact;

existing solutions are often ill-suited to these scenarios.

Schema evolution is an example of a kind of variation in

databases that is well-supported [4, 13, 32, 34, 42]. In the

schema evolution scenario, a database’s schema changes

over time as the database is extended or refactored to sup-

port new information needs, and the goal is to automatically

migrate data and queries to new versions of the database.

Thus, schema evolution is a kind of variation over the dimen-

sion of time, and each version of the database can be viewed

as a variant of the same database.

However, other kinds of database variation are less well

supported. One example arises in the context of software
product lines (SPLs) [3]. An SPL arises when the same code

base is used to produce multiple different variants of a soft-

ware system, customized with different sets of features or

tailored for different clients. Naturally, the data requirements

of each variant of an SPL may differ [41]. SPL researchers

have developed various encodings that allow describing vari-

ation in the data model among variants by annotating ele-

ments of the model with features from the SPL [1, 40, 41].

These solutions can generate a database schema variant for

each software variant of the SPL. However, these solutions

address only variation in the data model but do not extend to

the level of data or queries. The lack of variation support in

queries leads to unsafe techniques such as encoding different

variants of query through string munging, while the lack

of variation support in data precludes testing with multiple

variants of a database at once.

Worse is when multiple kinds of variation interact. Al-

though structural variation over time is well-supported by

schema evolution, and structural variation in “space” is par-

tially supported by recent SPL research, there is no sup-

port for the inevitable evolution of an SPL’s variational data

model [24]. Nor do existing approaches support variation

across all levels of a relational database: schema, queries, and

content. In previous work, we argued that schema evolution,

SPL-like variation, and other forms of database variation,
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Table 1. Schema variants of the employee database developed for multiple software variants by an SPL.

Temporal Database Schema Variants for SPL Software Variants Temporal

Features basic educational Features

𝑉1

empacct (empno, name, hiredate, title, deptno) course (courseno, coursename)

𝑇1
job (title, salary) teach (teacherno, courseno)
dept (deptname, deptno, managerno) student (studentno, courseno, grade)
empbio (empno, sex, birthdate)

𝑉2

empacct (empno, hiredate, title, deptno, std, instr) ecourse (courseno, coursename)

𝑇2
job (title, salary) course (courseno, coursename, time, class)
dept (deptname, deptno, managerno) teach (teacherno, courseno)
empbio (empno, sex, birthdate, name) student (studentno, courseno, grade)

𝑉3

empacct (empno, hiredate, title, deptno, std, instr , salary) ecourse (courseno, coursename, deptno)

𝑇3
dept (deptname, deptno, managerno, stdnum, instrnum) course (courseno, coursename, time, class, deptno)
empbio (empno, sex, birthdate, firstname, lastname) teach (teacherno, courseno)

take (studentno, courseno, grade)

such as data integration and database versioning, are all

facets of a similar problem that can be addressed by treating
variation as a general and orthogonal concern in relational

databases [6–8]. An advantage of treating different kinds of

variation uniformly is that it is easy to support the interaction

of multiple kinds of variation, and to coordinate variation in

structure with corresponding variation in queries and con-

tent. We illustrate these aspects throughout the paper using

a motivating example described in Section 2.

In previous work, we have proposed the idea of variational
databases (VDB), which incorporate variation as a general

and orthogonal concern in relational databases [6, 7]. In

this paper, we significantly expand on and realize this idea

through the formalization and implementation of a varia-
tional database management system (VDBMS). Specifically,

this paper makes the following contributions:

• We define a formal model of variational databases, whose
structure are given by a variational schema and whose

content are given by variational tables (Section 4).

• We define variational relational algebra for querying VDB,

a static type system for ensuring that all variants of a query

are compatible with the corresponding variants of the

VDB, and identify properties of VRA (Section 5).

• We implement a prototype of VDBMS as a layer on top

of a traditional relational database management system

(RDBMS) (Section 6) and evaluate this implementation on

previously developed [8] use cases (Section 7).

2 Motivating Example
In this section, we motivate VDBMS by illustrating the sce-

nario described in Section 1 where two kinds of database

variation interact, producing a scenario that is not well sup-

ported by any existing tools. The scenario involves the evo-

lution over time of a database-backed SPL.

An SPL uses a set of boolean variables called features to
indicate functionality that may be included or not in each

software variant. Consider an SPL that generates manage-

ment software for companies. It has a feature edu indicating

whether a company provides educational resources for its

employees. Software variants in which edu is enabled (i.e.,

edu = true) provide this additional functionality while vari-

ants where it is disabled provide only the basic functionality.

If edu is the only optional feature, then at any point in time,

this SPL has two variants: basic and educational. However,
each variant will also evolve as the SPL evolves, leading to

several different basic and educational variants over time.

Each variant of the SPL needs a database to store infor-

mation about employees, and the selection of features im-

pacts the database: While basic variants do not store any

education-related records, educational variants do. We vi-

sualize the impact of both features and the evolution of the

schema in Table 1, where feature variation is captured in

the columns and variation over time is captured in the rows.

Each basic schema variant contains only one schema in col-

umn basic, while an educational schema variant consists

of two sub-schemas: one from the basic column and one

from the educational column. The two sub-schemas may

vary over time independently. For example, an extension

to the educational sub-schema may use an older version of

the basic schema. This is illustrated by the highlighted cells

in Table 1, which forms a complete schema for a particular

educational variant. To describe variation over time of each

sub-schema, we introduce two disjoint sets of temporal fea-

tures (boolean variables, like any other feature), shown in

the leftmost and rightmost columns.

Now, consider the following scenario: In the initial design

of the basic database, the database administrator (DBA) set-

tles on three tables empacct, job, dept, and empbio, shown
in Table 1 and associated with feature 𝑉1. Later, they decide

to add attributes std and instr to the empacct table, associ-
ated with feature 𝑉1. Since some clients’ software relies on a

previous design, the two schemas have to coexist in parallel.
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Therefore, the presence of the std and instr attributes is vari-
ational, they only exist in the basic schema when 𝑉2 = true

and edu = true. This scenario is an example of component
evolution in SPLs, where developers update, refactor, and

improve components of the SPL, including the database [24].

Now, consider the case where a client that previously re-

quested a basic variant of the software has added courses to

educate its employees in specific subjects. The SPL developer

needs to enable the edu feature for this client, forcing the

adjustment of the schema variant to include the educational
sub-schema. This case describes product evolution, where
database evolution in an SPL results from clients adding/re-

moving features/components [24].

The situation is further complicated since the basic and
educational schemas are interdependent. Consider the basic
schema variant for feature 𝑉2. Attributes std and instr only
exist in the empacct relation when edu = true, represented

by a dash-underline, otherwise the empacct relation has only
the attributes empno, hiredate, title, and deptno. Hence, the
attributes std and instr in empacct relation are variational,
that is, they only exist in empacct relation when edu = true.

3 Preliminaries
In this section, we introduce concepts and notations that we

use throughout the paper. We discuss relational concepts

and their variational counterparts. Thus, for clarity, we use

an 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 to distinguish a non-variational entity from

its variational counterpart, e.g., 𝑥 is a non-variational entity

while 𝑥 is its variational counterpart, if it exists.

3.1 Relational Databases and Relational Algebra
A relational database 𝐷 stores information in a structured

manner by forcing data to conform to a schema 𝑆 that is a

finite set {𝑠
1
, . . . , 𝑠

𝑛
} of relation schemas. A relation schema is

defined as 𝑠 = 𝑟
(
𝑎
1
, . . . , 𝑎

𝑘

)
where each 𝑎

𝑖
∈ A is an attribute

contained in the relation named 𝑟 . We assume a total order

≤A on A, and assume for simplicity that sets of attributes

are sorted according to ≤A.

The content of database 𝐷 is stored in the form of tuples.
A tuple 𝑢 is a list of values. We do not distinguish between

different types of values within a relational database.
1
The

values within a tuple correspond to the attributes in its corre-

sponding relation schema, that is, given tuple𝑢 =
(
𝑣
1
, . . . , 𝑣

𝑘

)
in the relation with relation schema 𝑟

(
𝑎
1
, . . . , 𝑎

𝑘

)
, 𝑣

𝑖
corre-

sponds to attribute 𝑎
𝑖
. A relation content,𝑈 , is the set of all

tuples {𝑢
1
, . . . , 𝑢

𝑚
} corresponding to a particular relation.

The operation att (𝑖) returns the attribute corresponding to
index 𝑖 in a tuple, implicitly looking up the attribute in the

corresponding relation schema. A table 𝑡 =
(
𝑠,𝑈

)
is a pair of a

relation schema and relation content. A database instance, I,
of the database𝐷 with schema 𝑆 , is a set of tables {𝑡

1
, . . . , 𝑡

𝑛
}

1
This simplification does not limit our formalization or our implementation.

In fact, our implementation allows attributes to have different types.

for each relation in 𝑆 . When it is clear from context, we refer

to a database instance as simply a database.
We do not extend the notation of using underline for rela-

tional algebra operations. Instead, relational algebra opera-

tions are overloaded and are used as both plain relational and

variational operations. It should be clear from context when

an operation is variational or not. We also extend relational

algebra such that projection of an empty list of attributes is a

valid query that returns an empty set of tuples. We define the

empty query 𝜀 as shorthand for projecting an empty list of

attributes, that is, 𝜀 = 𝜋 {}𝑞, where 𝑞 is any relational query.

3.2 Encoding Variability
We encode variability in terms of features. The feature space,
F, of a variational database is a closed set of boolean variables
called features. A feature 𝑓 ∈ F can be enabled (i.e., 𝑓 = true)

or disabled (𝑓 = false). Features describe the variability in

a given variational scenario. For example, in the context of

schema evolution, features can be generated from version

numbers (e.g., features𝑉1 to𝑉3 and𝑇1 to𝑇3 in the motivating

example, Table 1); for SPLs, the features can be adopted from

the SPL feature set (e.g., the edu feature in our motivating

example, Table 1); and for data integration, the features may

represent different data sources.

Features are used at variation points to indicate which

variants a particular element belongs to. Thus, enabling or

disabling each of the features in the feature set produces

a particular database variant where all variation has been

removed. A configuration is a total function that maps every

feature in the feature set to a boolean value. We represent

a configuration by the set of enabled features. For example,

in our motivating scenario, the configuration {𝑉3,𝑇1, edu}
represents a database variant where only features𝑉3,𝑇1, and

edu are enabled (and the rest are disabled). This database

variant contains relation schemas in the yellow cells of Ta-

ble 1.We refer to a variant by the configuration that produces

it, e.g., variant {𝑉3,𝑇1, edu} refers to the variant produced by
applying that configuration.

When describing variation points in the database, we need

to refer to subsets of the configuration space. We do this

with propositional formulas of features. Thus, such a propo-

sitional formula defines a condition that holds for a subset

of configurations and their corresponding variants. For ex-

ample, the propositional formula ¬edu represents all vari-

ants of our motivating example where the edu feature is

disabled, i.e., variant schemas of the left schema column.

We call a propositional formula of features a feature ex-
pression and define it formally in Figure 1. The evaluation

function of feature expressions EJ𝑒K𝑐 : E → C → B sim-

ply substitutes each feature 𝑓 in the expression 𝑒 with the

boolean value given by configuration 𝑐 and then simplifies

the propositional formula to a boolean value. For example,

EJ𝑓1 ∨ 𝑓2K{𝑓1 } = true ∨ false = true, while EJ𝑓1 ∨ 𝑓2K{} =
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Feature expression syntax:

𝑓 ∈ F Feature Name
𝑏 ∈ B F true | false Boolean Value
𝑒 ∈ E F 𝑏 | 𝑓 | ¬𝑒 | 𝑒 ∧ 𝑒 | 𝑒 ∨ 𝑒 Feature Exp.
𝑐 ∈ C : F → B Configuration

Relations over feature expressions:

𝑒1 ≡ 𝑒2 iff ∀𝑐 ∈ C : EJ𝑒1K𝑐 = EJ𝑒2K𝑐
sat (𝑒) iff ∃𝑐 ∈ C : EJ𝑒K𝑐 = true

unsat (𝑒) iff ∀𝑐 ∈ C : EJ𝑒K𝑐 = false

Figure 1. Feature expression syntax and relations.

false ∨ false = false. Additionally, in Figure 1, we define

a binary equivalence relation (≡) on feature expressions cor-

responding to logical equivalence, and unary sat and unsat
predicates that determine whether a feature expression is

satisfiable or unsatisfiable, respectively.

To incorporate feature expressions into the database, we

annotate database elements (including attributes, relations,

and tuples) with feature expressions. An annotated element
𝑥𝑒 consists of an element 𝑥 and a feature expression 𝑒 called

its presence condition. The presence condition determines

under which configurations the element is present in the

database. For example, assuming F = {𝑓1, 𝑓2}, the annotated
number 2

𝑓1∨𝑓2
is present in variants {𝑓1}, {𝑓2}, and {𝑓1, 𝑓2}

but not in variant {}. The operation pc(𝑥𝑒 ) = 𝑒 returns the

presence condition of an annotated element.

No matter the context, features are often related in ways

that constrain the set of possible configurations. For example,

only one of the temporal features of 𝑉1–𝑉3 can be true for a

given variant. This relationship (dependency) is captured by

a feature expression, called a feature model and denoted by

𝑚, which restricts the set of valid configurations. That is, a
configuration 𝑐 is only valid if EJ𝑚K𝑐 = true. For example,

the restriction that at a given time only one of temporal

features 𝑉1–𝑉3 can be enabled is represented by the feature

model𝑉1⊕𝑉2⊕𝑉3, where 𝑓1⊕ 𝑓2⊕ . . .⊕ 𝑓𝑛 is syntactic sugar for

(𝑓1∧¬𝑓2∧. . .∧¬𝑓𝑛)∨(¬𝑓1∧𝑓2∧. . .∧¬𝑓𝑛)∨(¬𝑓1∧¬𝑓2∧. . .∧𝑓𝑛),
that is, the features are mutually exclusive.

3.3 Variational Sets
A variational set (v-set) 𝑋 = {𝑥1𝑒1 , . . . , 𝑥𝑛𝑒𝑛 } is a set of an-
notated elements [6, 21, 48]. We typically omit the pres-

ence condition true in a v-set, e.g., 4
true = 4. Concep-

tually, a v-set represents many different plain sets simul-

taneously. Thus, a plain set 𝑋 is a variant of the v-set 𝑋

corresponding to its configuration and it can be generated

given the variant 𝑋 ’s configuration 𝑐 by evaluating the pres-

ence condition of each element with 𝑐 and including the

element if the said evaluation results in true and excluding

it otherwise. This is done by the v-set configuration func-

tion XJ𝑋 K𝑐 . For example, assume we have the feature space

F = {𝑓1, 𝑓2} and the v-set𝑋1 = {2𝑓1 , 3𝑓2 , 4}.𝑋1 represents four

plain sets: {2, 3, 4} = XJ𝑋1K{𝑓1,𝑓2 } , i.e., the variant {2, 3, 4} is
generated from the v-set 𝑋1 under the configuration 𝑓1 =

true, 𝑓2 = true; {2, 4} = XJ𝑋1K{𝑓1 }; {3, 4} = XJ𝑋1K{𝑓2 }; and
{4} = XJ𝑋1K{} . Following database notational conventions
we drop the brackets of a v-set when used in database schema

definitions and queries.

A v-set itself can also be annotated with a feature expres-

sion. 𝑋 𝑒 = {𝑥1𝑒1 , . . . , 𝑥𝑛𝑒𝑛 }𝑒 is an annotated v-set where the
feature expression 𝑒 additionally applies to all elements in the

v-set. The normalization operation ↓ (𝑋 𝑒 ) applies this con-
straint by pushing it into the presence conditions of the in-

dividual elements: ↓ (𝑋 𝑒 ) = {𝑥𝑖𝑒𝑖∧𝑒 | 𝑥
𝑒𝑖
𝑖

∈ 𝑋 𝑒 , sat (𝑒𝑖 ∧ 𝑒)}.
Note that normalization also removes elements with un-

satisfiable presence conditions and may be applied to an

unannotated v-set 𝑋 since 𝑋true = 𝑋 . For example, in the

annotated v-set𝑋1 = {2𝑓1 , 3¬𝑓2 , 4, 5𝑓3 }𝑓1∧𝑓2 , all elements in the

set only exist when both 𝑓1 and 𝑓2 are enabled. Thus, normal-

izing the v-set 𝑋1 results in {2𝑓1∧𝑓2 , 4𝑓1∧𝑓2 , 5𝑓1∧𝑓2∧𝑓3 }. The ele-
ment 3 is dropped since ¬sat (pc(3, 𝑋1)), where pc(3, 𝑋1) =
¬𝑓2 ∧ (𝑓1 ∧ 𝑓2). We use the function pc(𝑥, 𝑋 𝑒 ) to return the

presence condition of a unique variational element within a

bigger variational structure.

We define several operations over v-sets [5]; these op-

erations are used in Section 5.2. The semantics of a v-set

operation is equivalent to applying the corresponding plain

set operation to every corresponding variant of the argu-

ment v-sets. For example, the union of two v-sets 𝑋1 ∪ 𝑋2

should produce a new v-set 𝑋3 such that ∀𝑐 ∈ C. XJ𝑋3K𝑐 =
XJ𝑋1K𝑐 ∪XJ𝑋2K𝑐 , where ∪ is the plain set union operation.

4 Variational Databases
To incorporate variability within a database, we annotate ele-

ments with feature expressions, as introduced in Section 3.2.

We use annotated elements both in the schema and content.

Within a schema we allow attributes and relations to exist

conditionally based on the feature expression assigned to

them (Section 4.1). At the content level, we annotate each

tuple with a feature expression, indicating when the tuple is

present (Section 4.2).

4.1 Variational Schemas
A variational schema captures variation in the structure of

a database by indicating which attributes and relations are

included or excluded in which variants. To this end, we anno-

tate attributes, relations, and the schema itself with feature

expressions, which describe the conditions under which each

is present. A variational relation schema (v-relation schema),
𝑠 , is a relation name with an annotated v-set of attributes,

𝑠 ∈ R F 𝑟 (𝐴)𝑒 , where𝐴 is a v-set of attributes. The presence

condition of the v-relation schema, 𝑒 , determines in what
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variants of the database the relation itself is present. A vari-
ational schema (v-schema) is an annotated set of v-relation

schemas, 𝑆 ∈ SF {𝑠1, . . . , 𝑠𝑛}𝑚 . The presence condition of

the entire v-schema,𝑚, is the VDB’s feature model, which

provides a top-level constraint on the set of valid config-

urations, as described in Section 3.2. Hence, the v-schema

defines all valid schema variants of a VDB.

Example 4.1. 𝑆1 is the v-schema of a VDB that only con-
tains relation empbio in Table 1 and has the feature space
F = {𝑉1,𝑉2,𝑉3}. Note that attributes that exist conditionally
are annotated with a feature expression to account for such a
condition, e.g., the name attribute only exists when 𝑉2 = true.

𝑆1 = {empbio(empno, sex, birthdate, name𝑉2 , firstname𝑉3 ,

lastname𝑉3 )}𝑚1

where𝑚1 = 𝑉1 ⊕ 𝑉2 ⊕ 𝑉3.

where𝑚1 allows only one temporal feature for the basic schema
to be enabled at a time.

The presence of an attribute follows the hierarchal lay-

out of information in a database: an attribute’s presence

depends on the presence of its parent v-relation, which

in turn depends on the presence of the v-schema. Thus,

the complete presence condition of the attribute 𝑎𝑒𝑎 in v-

relation 𝑟 (. . .)𝑒𝑟 defined in v-schema 𝑆 with feature model

𝑚 is pc(𝑎, 𝑆) = 𝑒𝑎 ∧ 𝑒𝑟 ∧𝑚.

Similarly, the presence condition of v-relation 𝑟 is pc(𝑟, 𝑆) =
𝑒𝑟 ∧𝑚. For example, in Example 4.1 we have pc(empbio, 𝑆1) =
𝑉3 ∧𝑚1. Furthermore, a database element is only present

in a variant for which evaluation of its presence condition

under the variant’s configuration is true, e.g., in Example 4.1

the name attribute is present in the variant {𝑉2} because

EJpc(name, 𝑆1)K{𝑉2 } = EJ𝑉3∧true∧𝑚1K{𝑉2 } = true∧true∧
(false⊕true⊕false) = true but it is not present in the vari-

ant {𝑉3} since EJpc(name, 𝑆1)K{𝑉3 } = false∧true∧(false⊕
false ⊕ false) = false.

Intuitively and similar to v-sets, a v-schema is a system-

atic compact representation of a set of plain schemas called

variants. A schema variant can be obtained by configuring
the v-schema with that variant’s configuration [5].

4.2 Variational Tables
Variation also exists in database content. To account for

content variability, we tag tuples with presence conditions.

Thus, a variational tuple (v-tuple) is an annotated tuple,

𝑢 ∈ 𝑈 F (𝑣1, . . . , 𝑣𝑙 )𝑒𝑢 . A v-tuple corresponds to a v-relation,

𝑟 (𝑎1, . . . , 𝑎𝑙 )𝑒𝑟 , where each element 𝑣𝑖 is a value correspond-

ing to attribute 𝑎𝑖 (recall that attributes in a v-relation are

ordered). For example, (38, 𝑃𝐿, 678)𝑇3 is a v-tuple that be-

longs to the ecourse relation from Example 4.1 and is only

present when 𝑇3 is enabled. The content of a v-relation is

a set of v-tuples, 𝑈 ∈ T F {𝑢1, . . . , 𝑢𝑘 } and a variational
table (v-table) is the pair of its relation schema and content,

𝑡 = (𝑠,𝑈 ). A variational database instance is a set of v-tables,
I ∈ I F {𝑡1, . . . , 𝑡𝑛}𝑚 . A VDB instance is well-formed if

its encoded variation at the schema and content level are

consistent and satisfiable [8].

Similar to a v-schema, a user can configure a v-table or

a VDB for a specific variant [5]. This allows users to de-

ploy a VDB for a specific configuration and generate the

corresponding VDB variant. Additionally, our VDB frame-

work puts all variants of a database into one VDB and it

keeps track of which variant a tuple belongs to by annotat-

ing them with presence conditions. For example, consider

tuples (38, 𝑃𝐿, 678)𝑇3 and (23, 𝐷𝐵, NULL)𝑇2 that belong to the

ecourse table. The presence conditions 𝑇3 and 𝑇2 state that
these tuples belong to temporal variants four and five of this

VDB, respectively.

Our VDB framework encodes variation in databases at two

levels: schema and content. While content-level variation

can stand on its own, such as frameworks used for database

versioning and experimental databases [26], the schema level

cannot, e.g., ecourse
(
courseno, coursename, deptno𝑇3

)edu∧(𝑇2∨𝑇3)
encodes variation at the schema level for variants of relation

ecourse in Table 1. Dropping the presence conditions of tu-

ples leads to ambiguity, i.e., it is unclear which variant each

of the tuples (38, 𝑃𝐿, 678) and (23, 𝐷𝐵, NULL) belongs to. We

can only guess that they belong to variants where 𝑇2 or 𝑇3
are enabled, but, we do not know for sure which one.

Note that we limit the granularity of content variation

to tuples, that is, individual values within a tuple are not

variational. This design decision causes some redundancy.

For example, the tuples (38, 𝑃𝐿, 678)𝑇3 and (38, 𝑃𝐿, NULL)¬𝑇3
cannot be represented as a single tuple with variation in the

third element. However, this design decision does not prevent

us from distinguishing between a NULL value that represents

a missing value and a NULL value that represents a cell that

is not present. This distinction can be made by checking the

satisfiability of the presence condition of the value 𝑣𝑖 in tuple

𝑢 of relation 𝑟 in schema 𝑆 : If sat (pc(𝑣𝑖 , 𝑢)) then the NULL

indicates a missing value and otherwise it indicates a non-

present cell, where pc(𝑣𝑖 , 𝑢) = 𝑒𝑢 ∧ pc(𝑟, 𝑆) ∧ pc(att (𝑖), 𝑟 ).

5 Variational Queries
The variational nature of a VDB requires a query language

that accounts for variation directly. We formally define varia-
tional relational algebra (VRA) in Section 5.1 as our algebraic

query language. A query written in VRA is called a varia-
tional query (v-query), though we often just say query when

it is clear from context. Unlike relational queries that convey

an intent over a single database, a v-query typically conveys

the same intent over several relational database variants.

However, a single v-query is also capable of capturing differ-

ent intents over different database variants.

Due to the expressiveness of v-queries, we define a type

system for VRA that statically checks a v-query against the
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Operators:

• F < | ≤ | = | ≠ | > | ≥
◦ F ∪ | ∩

Variational conditions:

𝜃 ∈ Θ F 𝑏 | 𝑎 • 𝑘 | 𝑎 • 𝑎 | ¬𝜃 | 𝜃 ∨ 𝜃

| 𝜃 ∧ 𝜃 | 𝑒 ⟨𝜃, 𝜃⟩

Variational queries:

𝑞 ∈ Q F 𝑟 Relation
| 𝜎𝜃𝑞 Selection
| 𝜋𝐴𝑞 Projection
| 𝑒 ⟨𝑞, 𝑞⟩ Choice
| 𝑞 × 𝑞 Cartesian Product
| 𝑞 ◦ 𝑞 Set Operation
| 𝜀 Empty Relation

Figure 2. Syntax of variational relational algebra.

underlying v-schema in Section 5.2. To make v-queries more

useable we relieve the user from repeating the v-schema’s

variation in their v-queries. This is achieved by explicitly an-

notating queries in Section 5.3. We then define the variation-
preservation property for VRA at the type level in Section 5.4.

5.1 Variational Relational Algebra
To account for variation, VRA combines relational algebra

(RA) with choices [20, 27, 47]. A choice 𝑒 ⟨𝑥1, 𝑥2⟩ consists of a
feature expression 𝑒 , called the dimension of the choice, and

two alternatives 𝑥1 and 𝑥2. For a given configuration 𝑐 , the

choice 𝑒 ⟨𝑥1, 𝑥2⟩ can be replaced by 𝑥1 if 𝑒 evaluates to true

under configuration 𝑐 , (i.e., EJ𝑒K𝑐 ), or 𝑥2 otherwise.
Figure 2 defines the syntax of VRA. The selection opera-

tion is similar to standard RA selection except that the con-

dition parameter is variational meaning that it may contain

choices. For example, the query 𝜎𝑒 ⟨𝑎1=𝑎2,𝑎1=𝑎3 ⟩𝑟 selects a v-
tuple 𝑢 if it satisfies the condition 𝑎1 = 𝑎2 and sat (𝑒 ∧ pc(𝑢))
or if 𝑎1 = 𝑎3 and sat (¬𝑒 ∧ pc(𝑢)). The projection operation

is parameterized by a v-set of attributes, 𝐴. For example, the

query 𝜋𝑎1,𝑎2𝑒𝑟 projects 𝑎1 from relation 𝑟 unconditionally,

and 𝑎2 when sat (𝑒). The choice operation enables combin-

ing two v-queries to be used in different variants based on

the dimension. In practice, it is often useful to return infor-

mation in some variants and nothing in others. We introduce

an explicit empty query 𝜀 to facilitate this. Similar to our def-

inition of the empty query for relational algebra, for VRA we

also have: 𝜀 = 𝜋 {}𝑞. The empty query is used, for example,

in 𝑞2 in Example 5.1. The rest of VRA’s operations are simi-

lar to RA, where all set operations (union, intersection, and

product) are changed to the corresponding v-set operations.

Our implementation of VRA also provides mechanisms for

renaming queries and qualifying attributes with relation/sub-

query names. These features are needed to support self joins

and to project attributes with the same name in different

relations. However, for simplicity, we omit these features

from the formal definition in this paper.

The result of a v-query is a v-table with the reserved rela-

tion name result. For example, assume that v-tuples (1, 2) 𝑓1
and (3, 4)¬𝑓3 belong to a v-relation 𝑟 (𝑎1, 𝑎2), which is the only
relation in a VDB with the trivial feature model true. The

query 𝑓3⟨𝜋𝑎1 𝑓2 𝑟, 𝜀⟩ returns a v-table with relation schema

result (𝑎1 𝑓2 )
𝑓3
, which indicates that the result is only non-

empty when 𝑓3 is true and that the result includes attribute

𝑎1 when 𝑓2 is true. The content of the result relation for

the example query is a single v-tuple (1) 𝑓1 . The tuple (3)¬𝑓3
is not included since the projection occurs in the context

of a choice in 𝑓3, which is incompatible with the presence

condition of the tuple, i.e., unsat (𝑓3 ∧ ¬𝑓3). This illustrates
how choices can effectively filter the tuples in a VDB based

on the dimension. Example 5.1 illustrates how a v-query can

be used to express variational information needs.

Example 5.1. Assume we have the VDB introduced in Exam-
ple 4.1. The user wants the employee ID numbers (empno) and
names for variants {𝑉2} and {𝑉3}. The user needs to project the
name attribute for variant {𝑉2}, the firstname and lastname
attributes for variant {𝑉3}, and empno attribute for both vari-
ants. This can be expressed with the following v-query.

𝑞1 = 𝜋empno𝑉2∨𝑉3 ,name,firstname,lastnameempbio

In the example, note that the user does not need to re-

peat the variability encoded in the v-schema in their query,

that is, they do not need to annotate name, firstname, and
lastname with 𝑉2, 𝑉3, and 𝑉3, respectively. We discuss this

in more detail in Section 5.3. 𝑞1 queries all three variants

simultaneously although the returned results are only as-

sociated with variants 𝑉2 and 𝑉3 due to the annotation of

the attribute empno in the query and the presence condi-

tions of the rest of the projected attributes in the schema.

Yet, the query can be more simplified with a choice. 𝑞2 se-

lects only two out of the three variants explicitly: 𝑞2 =

𝑉2∨𝑉3⟨𝜋empno,name,firstname,lastnameempbio, 𝜀⟩. Note that queries
𝑞1 and𝑞2 return the same set of v-tuples since neither returns

tuples associated with variant 𝑉1, but their returned v-tables

have different presence conditions, thus, 𝑞2 filters out tuples

that belong to variant 𝑉1 while 𝑞1 does not.

Expressing the same intent over several database variants

by a single query relieves the DBA frommaintaining separate

queries for different variants or configurations of the schema.

Example 5.2 illustrates this point.

Example 5.2. Assume a VDB with F = {𝑉1,𝑉2,𝑉3} and the
corresponding basic schema variants in Table 1. The user wants
to get all employee names across all variants. They express this
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QJ.K : Q → C → Q

QJ𝑟K𝑐 = RJ𝑟K𝑐 = 𝑟

QJ𝜎𝜃𝑞K𝑐 = 𝜎CJ𝜃K𝑐QJ𝑞K𝑐
QJ𝜋𝐴𝑞K𝑐 = 𝜋AJ𝐴K𝑐QJ𝑞K𝑐

QJ𝑒 ⟨𝑞1, 𝑞2⟩K𝑐 =
{
QJ𝑞1K𝑐 , if EJ𝑒K𝑐 = true

QJ𝑞2K𝑐 , otherwise

Figure 3. Configuration of VRA. It assumes that the v-query

is well-typed. RJ.K𝑐 , CJ.K𝑐 , and AJ.K𝑐 are configuration of

v-relation, v-condition, and v-set of attributes, respectively.

This function is a trivial recursion for the rest of VRA opera-

tions and QJ𝜀K𝑐 = 𝜀.

intent by the query 𝑞3:

𝑞
3
= 𝑉1⟨𝜋nameempacct,

(𝑉2 ∨𝑉3)⟨𝜋name,firstname,lastnameempbio, 𝜀⟩⟩
Since the v-schema enforces that exactly one of 𝑉1– 𝑉3 be en-
abled, we can simplify the query by omitting the final choice.

𝑞
4
= 𝑉1⟨𝜋nameempacct, 𝜋name,firstname,lastnameempbio⟩

In principle, v-queries can also express arbitrarily different

intents over different database variants. However, we expect

that v-queries are best used to capture single (or at least

related) intents that vary in their realization since this is

easier to understand and increases the potential for sharing

in both the representation and execution of a v-query.

The configuration function maps a v-query under a con-

figuration to a relational query, defined in Figure 3. Thus,

a v-query can be understood as a set of relational queries

that their results is gathered in a single table and tagged

with the feature expression stating their variant. Users can

deploy queries for a specific variant by configuring them.

Example 5.3 illustrates configuring a query.

Example 5.3. Assume the underlying VDB has the v-schema
𝑆3 = {𝑟

(
𝑎1

𝑓1 , 𝑎2, 𝑎3
) 𝑓1∨𝑓2 } and F = {𝑓1, 𝑓2}. The v-query 𝑞5 =

𝜋𝑎1,𝑎2 𝑓1∧𝑓2 ,𝑎3 𝑓2 𝑟 is configured to the following relational queries:
QJ𝑞5K{𝑓1 } = QJ𝑞5K{ } = 𝜋𝑎

1

𝑟 ,QJ𝑞5K{𝑓2 } = 𝜋𝑎
1
,𝑎

3

𝑟 ,QJ𝑞5K{𝑓1,𝑓2 } =
𝜋𝑎

1
,𝑎

2
,𝑎

3

𝑟 .

VRA enables querying multiple database variants encoded

as a singled VDB simultaneously and selectively. More pre-

cisely, VRA is maximally expressive in the sense that it can

express any set of plain RA queries over any subset of rela-

tional database variants encoded as a VDB. We prove this

claim in Theorem 5.4.

Theorem 5.4. Given a set of plain RA queries 𝑞
1

, . . . , 𝑞
𝑛

where each query 𝑞
𝑖
is to be executed over a disjoint subset

I𝑖 of variants of the VDB instance I, there exists a v-query 𝑞
such that ∀𝑐 ∈ C. IJIK𝑐 = I𝑖 =⇒ QJ𝑞K𝑐 = 𝑞

𝑖
.

Proof. By construction. Let 𝑓𝑖 be the feature expression that

uniquely characterizes the variants in each I𝑖 . Then 𝑞 = (𝑓1∧
¬𝑓2∧ . . .∧¬𝑓𝑛)⟨𝑞

1

, (𝑓2∧ . . .∧¬𝑓𝑛)⟨𝑞
2

, . . . 𝑓𝑛 ⟨𝑞
𝑛
, 𝜀⟩ . . .⟩⟩. □

The above construction relies on the fact that every RA query

is a valid VRA (sub)query in which every presence condition

is true. Of course, in most realistic scenarios, we expect

that v-queries can be encoded more efficiently by sharing

commonalities and embedding relevant choices and presence

conditions within the v-query.

5.2 Well-Typed Queries
In this section, we introduce a static type system for VRA.

The type system ensures that queries are consistent with the

underlying variational schema. That is, that all referenced

relations and attributes are present in the variation contexts

in which they are used. For example, consider the VDB from

Example 5.3 that contains only the relation 𝑟 (𝑎1 𝑓1 , 𝑎2, 𝑎3) 𝑓1∨𝑓2 .
The query 𝜋𝑎4𝑟 is ill-typed since 𝑎4 is not present in 𝑟 . Simi-

larly, the queries 𝜋𝑎1¬𝑓1 𝑟 and 𝑓1⟨𝜋𝑎2𝑟, 𝜋𝑎1𝑟 ⟩ are both ill-typed

since 𝑎1 is not present in 𝑟 when 𝑓1 is disabled.

The type of a VRA query is a v-relation schema result (𝐴)𝑒 .
However, since the relation name is the same for all queries,

we shorten this to𝐴𝑒
, that is, an annotated v-set of attributes.

The annotation 𝑒 corresponds to the presence condition of

the returned table. The presence conditions of attributes

within 𝐴 may differ from the corresponding presence condi-

tions in the original v-schema due to variation constraints

imposed by the query. For example, continuing with relation

𝑠 = 𝑟 (𝑎1 𝑓1 , 𝑎2, 𝑎3) 𝑓1∨𝑓2 , the query 𝜋𝑎2 𝑓1 𝑟 has type {𝑎2 𝑓1 }𝑓1∨𝑓2 .
In the original schema, 𝑎2 is present when 𝑓1 ∨ 𝑓2, while in

the query it is present only when 𝑓1 is enabled.

Figure 4 defines a typing relation that relates VRA queries

to their types. The judgment form 𝑒, 𝑆 ⊢ 𝑞 : 𝐴𝑒′
states that

in variation context 𝑒 within v-schema 𝑆 , v-query 𝑞 has

type 𝐴𝑒′
. If a query does not have a type, it is ill-typed. A

variation context is a feature expression that tracks which

variants the current subquery is present in. We sometimes

use the judgment form 𝑆 ⊢ 𝑞 : 𝐴𝑒′
when the variation context

is the unextended featuremodel, that is, pc(𝑆), 𝑆 ⊢ 𝑞 : 𝐴𝑒′
.We

assume that the v-set of attributes𝐴 is normalized to remove

elements with unsatisfiable presence conditions, but this

normalization is only shown explicitly in the rules where

strictly necessary.

The rule Relation-E looks up relation 𝑟 in the v-schema 𝑆

and returns its v-set of attributes 𝐴. The presence condition

of 𝐴 is the conjunction of the relation’s presence condition

in the v-schema, 𝑒 ′, the current variation context, 𝑒 , and the

feature model, pc(𝑆). In this way, the type is constrained

to reflect both the constraints present in the v-schema and

the context of the relation reference in the query. The last

premise ensures that the relation exists in at least one variant

by checking that the type’s presence condition is satisfiable.
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VRA typing rules:

Relation-E

𝑟 (𝐴)𝑒
′
∈ 𝑆 𝑒 ′′ = 𝑒 ∧ 𝑒 ′ ∧ pc(𝑆) sat

(
𝑒 ′′

)
𝑒, 𝑆 ⊢ 𝑟 : 𝐴𝑒′′

Project-E

𝑒, 𝑆 ⊢ 𝑞 : 𝐴′𝑒′ |𝐴| =
��↓ (𝐴𝑒 )

�� 𝐴 ≺↓ (𝐴′𝑒′)

𝑒, 𝑆 ⊢ 𝜋𝐴𝑞 :

(
𝐴 ∩𝐴′)𝑒′

Select-E

𝑒, 𝑆 ⊢ 𝑞 : 𝐴𝑒′ 𝑒, ↓ (𝐴𝑒′) ⊢ 𝜃
𝑒, 𝑆 ⊢ 𝜎𝜃𝑞 : 𝐴𝑒′

Choice-E

𝑒 ∧ 𝑒 ′, 𝑆 ⊢ 𝑞1 : 𝐴1

𝑒1 𝑒 ∧ ¬𝑒 ′, 𝑆 ⊢ 𝑞2 : 𝐴2

𝑒2

𝑒, 𝑆 ⊢ 𝑒 ′⟨𝑞1, 𝑞2⟩ :
(
↓ (𝐴𝑒1

1
) ∪ ↓ (𝐴𝑒2

2
)
)𝑒1∨𝑒2 EmptyRelation-E

𝑒, 𝑆 ⊢ 𝜀 : { }false

Product-E

𝑒, 𝑆 ⊢ 𝑞1 : 𝐴1

𝑒1 𝑒, 𝑆 ⊢ 𝑞2 : 𝐴2

𝑒2 ↓ (𝐴𝑒1
1
)∩ ↓ (𝐴𝑒2

2
) = {}

𝑒, 𝑆 ⊢ 𝑞1 × 𝑞2 :

(
↓ (𝐴𝑒1

1
)∪ ↓ (𝐴𝑒2

2
)
)𝑒1∨𝑒2

SetOp-E

𝑒, 𝑆 ⊢ 𝑞1 : 𝐴1

𝑒1 𝑒, 𝑆 ⊢ 𝑞2 : 𝐴2

𝑒2 ↓ (𝐴𝑒1
1
) ≡↓ (𝐴𝑒2

2
)

𝑒, 𝑆 ⊢ 𝑞1 ◦ 𝑞2 : 𝐴𝑒1
1

V-condition typing rules: (As a reminder, 𝑏: boolean tag, 𝑎: plain attribute, 𝑘: constant value):

Boolean-C

𝑒,𝐴 ⊢ 𝑏

AttOptVal-C

𝑎𝑒
′
∈ 𝐴 sat

(
𝑒 ′ ∧ 𝑒

)
𝑒, 𝐴 ⊢ 𝑎 • 𝑘

AttOptAtt-C

𝑎1
𝑒1 ∈ 𝐴 𝑎2

𝑒2 ∈ 𝐴 sat (𝑒1 ∧ 𝑒2 ∧ 𝑒)
𝑒,𝐴 ⊢ 𝑎

1
• 𝑎

2

Neg-C

𝑒, 𝐴 ⊢ 𝜃
𝑒,𝐴 ⊢ ¬𝜃

Conjunction-C

𝑒, 𝐴 ⊢ 𝜃1 𝑒, 𝐴 ⊢ 𝜃2
𝑒,𝐴 ⊢ 𝜃1 ∧ 𝜃2

Disjunction-C

𝑒, 𝐴 ⊢ 𝜃1 𝑒, 𝐴 ⊢ 𝜃2
𝑒,𝐴 ⊢ 𝜃1 ∨ 𝜃2

Choice-C

𝑒 ∧ 𝑒 ′, 𝐴 ⊢ 𝜃1 𝑒 ∧ ¬𝑒 ′, 𝐴 ⊢ 𝜃2
𝑒,𝐴 ⊢ 𝑒 ′⟨𝜃1, 𝜃2⟩

Figure 4. The rules assume that the underlying VDB is well-formed. Remember that our theory assumes all attributes have

the same type and all constants belong to attributes’ domain.

This means that referencing a relation in a context where it

is never present is a type error.

For a projection 𝜋𝐴𝑞, the rule Project-E checks that all

projected attributes𝐴 are present in at least one variant of the

variation context (second premise) and that these attributes

are subsumed by type of the subquery 𝑞 (third premise). The

subsumption relation 𝐴 ≺ 𝐴′
used in the third premise is

defined as ∀𝑎𝑒1 ∈↓ (𝐴).∃𝑒2 .𝑎𝑒2 ∈↓ (𝐴′), sat (𝑒1 ∧ 𝑒2), which
ensures that all of the projected attributes are present in the

type of the subquery 𝑞, and that the presence conditions

of the v-set of projected attributes do not contradict the

presence conditions in the type of 𝑞. The result type is the v-

set intersection of the projected attributes and the attributes

of the subquery ensuring that the variation constraints of

both are captured.

The rule Select-E checks if its subquery and v-condition

are well-typed and if so it returns the subquery’s type. The

v-condition typing relation is defined in Figure 4 and has the

judgment form 𝑒, 𝐴 ⊢ 𝜃 , which states that the v-condition 𝜃

is well-formed in variation context 𝑒 within attribute v-set

𝐴. The v-condition typing rules ensure that each attribute

used in a v-condition is present in 𝐴 and that the presence

condition associated with that attribute does not contradict

the current variation context.

For a choice of queries 𝑒 ′⟨𝑞1, 𝑞2⟩, the rule Choice-E re-

cursively infers the type of each alternative subquery in a

variation context extended to reflect which branch of the

choice the subquery is contained in, that is, 𝑒 ′ for 𝑞1 and ¬𝑒 ′
for 𝑞2. The result type of a choice is the v-set union of the

types of the subqueries annotated by the disjunction of their

presence conditions, reflecting that either one alternative

will be chosen or the other. Note that Choice-E is the only

rule that refines the variation context.

The EmptyRelation-E rule states that an empty relation

has the type of an empty set annotated by false, which

is the required base case to ensure that the type system is

variation preserving (see Section 5.4). The remaining rules

are straightforward extensions of the standard relational

algebra typing rules for product and set operations to account

for variation contexts and v-sets.

5.3 Explicitly Annotating Queries
V-queries do not need to repeat information that can be in-

ferred from the v-schema or the type of a query. For example,

the query 𝑞1 shown in Example 5.1 does not contradict the

schema and thus is type correct. However, it does not in-

clude the presence conditions of attributes and the relation

encoded in the schema while 𝑞6 repeats this information.

𝑞6 = 𝜋empno𝑉2∨𝑉3 ,name𝑉2 ,firstname𝑉3 ,lastname𝑉3 (𝑚2⟨empbio, 𝜀⟩)

Similarly, the projection in the query𝑞7 = 𝜋name,firstnamesubq7
where subq

7
= 𝑉2⟨𝜋name𝑞6, 𝜋firstname𝑞6⟩ is written over 𝑆1
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⌊.⌋𝑆 : Q → S → Q
⌊𝑟⌋𝑆 = pc(𝑟 )⟨𝜋𝐴𝑟, 𝜀⟩ where 𝑆 ⊢ 𝑟 : 𝐴

⌊𝜋𝐴𝑞⌋𝑆 = 𝜋𝐴∩𝐴′ ⌊𝑞⌋𝑆 where 𝑆 ⊢ ⌊𝑞⌋𝑆 : 𝐴′

⌊𝑒 ⟨𝑞1, 𝑞2⟩⌋𝑆 = 𝑒 ⟨⌊𝑞1⌋↓(𝑆𝑒 ) , ⌊𝑞2⌋↓(𝑆¬𝑒 )⟩

Figure 5. Explicitly annotating a well-typed query with a

v-schema. This function is a trivial recursion for the rest of

VRA operations and ⌊𝜀⌋𝑆 = 𝜀.

and it does not repeat the presence conditions of attributes

from its subq
7
’s type. The query 𝑞8 = 𝜋name𝑉2 ,firstname¬𝑉2 subq7

makes the annotations of projected attributes explicit w.r.t.
both the v-schema 𝑆1 and its subquery’s type. Although re-

lieving the user from explicitly repeating variation makes

VRA easier to use, queries still have to state variation explic-

itly to avoid losing information when decoupled from the

schema. We do this by defining the function ⌊𝑞⌋𝑆 : Q →
S → Q, that explicitly annotates a query 𝑞 with the schema 𝑆 .
The explicitly annotating query function, formally defined

in Figure 5, conjoins attributes’ and relations’ presence con-

ditions with the corresponding annotations in the query and

wraps subqueries in a choice when needed. Note that, 𝑞8 and

𝑞6 are ⌊𝑞7⌋𝑆1 and ⌊𝑞1⌋𝑆1 , respectively, after simplification.

Theorem 5.5. If the query 𝑞 has the type𝐴 then its explicitly
annotated counterpart has the same type 𝐴, i.e.:

𝑆 ⊢ 𝑞 : 𝐴 ⇒ 𝑆 ⊢ ⌊𝑞⌋𝑆 : 𝐴′ and 𝐴 ≡ 𝐴′

This shows that the type system applies the schema to the
type of a query although it does not apply it to the query. The
type equivalence is v-set equivalence for normalized v-set of
attributes.

We have proved Theorem 5.5 in the Coq proof assistant [31].

5.4 Variation-Preservation Property
To show that VRA is type safe we benefit from RA’s type

safety [36] by defining the variation-preservation property for
VRA which connects VRA to RA. The variation-preservation

property states that if a query 𝑞 has type 𝐴 then configuring

the type of a valid explicitly annotated query is the same as

the type of its corresponding configured query. Theorem 5.6

proves this property.

⌊𝑞⌋𝑆 𝐴𝑒

𝑞 𝐴

type

QJ.K𝑐 AJ.K𝑐
𝑡𝑦𝑝𝑒

Theorem 5.6 is visualized by the

commuting diagram below, where the

vertical arrows indicate correspond-

ing configure functions, type indicates
VRA’s type system, i.e., type(𝑞) = 𝐴𝑒

is

𝑆 ⊢ 𝑞 : 𝐴𝑒
, and type indicates RA’s type system, i.e., 𝑆 ⊢ 𝑞 : 𝐴.

We assume that the v-schema and schema are passed to the

respective type systems. The diagram states that if we con-

figure 𝑞 with 𝑐 , then determine the type of the plain query

𝑞 using the standard RA type system (the lower left path),

we get the same type 𝐴 as if we had instead inferred a varia-

tional type𝐴 for𝑞 using the VRA type system, then configure

𝐴 with 𝑐 (the upper right path). The variation-preservation

property ensures that the type of a variational query encodes

the types of all the plain queries it encodes.
2
The query must

be explicitly annotated since the configuration function for

v-queries does not take the v-schema into account.

Theorem 5.6. For all configurations 𝑐 , if a query 𝑞 has type
𝐴 then its configured query QJ⌊𝑞⌋𝑆K𝑐 has type AJ𝐴K𝑐 , i.e.,

∀𝑐 ∈ C.𝑆 ⊢ 𝑞 : 𝐴 ⇒ SJ𝑆K𝑐 ⊢ QJ⌊𝑞⌋𝑆K𝑐 : AJ𝐴K𝑐 .

Proof. By structural induction. We proved this theorem in

the Coq proof assistant [31]. □

6 VDBMS Implementation
We implement a prototype of the VDB and VRA frameworks

as the Variational Database Management System (VDBMS).
VDBMS is implemented in Haskell and sits on top of any

standard relational DBMS. Data is stored in the form of v-

tables, explained in Section 4.2. The presence conditions on

tuples are stored as an additional attribute in each table. All

of the other presence conditions in our framework are stored

either in the Haskell layer or in a separate metadata table in

the underlying database. To support running VDBMS with

multiple different plain relational DBMS backends, we pro-

vide a shared interface for communicating with the backend

DBMS and instantiate it for different database engines such

as PostgreSQL and MySQL. An expert can extend VDBMS to

another database engine by writing methods for connecting

to and querying the database.

6.1 VDBMS Architecture
Figure 6 shows the architecture of VDBMS. The VDB and

its v-schema are stored in the DBMS, shown in the bottom

right. A VDB can be configured to its plain relational database
variants for deployment. For example, an SPL developer may

configure a VDB to produce the plain relational database to

accompany a software product for a client.

To extract information from a VDB, a user inputs a v-query

𝑞 to VDBMS. First, 𝑞 is checked by the type system. If the

query is ill-typed, the user gets an error explaining what part

of the query violated the v-schema. Otherwise, 𝑞 is explicitly

annotated with information from the schema and passed to

the variation minimization module. This module simplifies

the query based on syntactic rules [5] that preserve the se-

mantics of the query. These rules make VRA flexible since an

information need can be represented by multiple different

v-queries as demonstrated in Example 5.1 and Example 5.2.

The simplified query is then sent to the generator module

where SQL queries are generated from v-queries by differ-

ent approaches explained in Section 6.2. The generated SQL

2
We have also defined this property at the semantics level to show that

running a variational query corresponds to running all of its variants on all

of the variants of the VDB [5].
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Figure 6. VDBMS architecture. The dotted double-line from

the input v-query indicates the dependency of passing the

v-query to this module only if it is well-typed.

queries are then executed on the underlying DBMS yielding

one or more v-tables. These are passed to the v-table builder,
which combines them into a single v-table to be returned to

the user. The v-table builder cleans up the resulting v-table

by filtering out duplicate and invalid tuples, and shrinking

presence conditions.

6.2 SQL Generators
Since VDBMS sits on top of a plain relational DBMS, v-

queries must be translated into (sets of) plain relational

queries. We have explored multiple different SQL genera-
tors for v-queries. In the descriptions below, we focus on the

differences among each approach. However, each of these

generators must also add relation qualifiers to attributes, re-

name subqueries where appropriate, and extend the list of

projected attributes to include the special presence condi-

tion attribute stored with each v-table. The resulting v-tables

produced by each approach are passed to the v-table builder

to be combined into a single resulting v-table.

Given an explicitly annotated, well-typed v-query 𝑞, we

explored five approaches to generate SQL queries for 𝑞:

1. Naive Brute Force (NBF): Configures 𝑞 into a set of RA

queries corresponding to each valid configuration of 𝑞.

2. Unique Brute Force (UBF): Like NBF except that we only
generate SQL queries for unique RA queries produced by

configuring 𝑞.

3. Union-All-Variants (UAV): Takes the SQL queries gener-

ated by UBF and unions them into a single SQL query. To do

so, it forces all of the SQL queries to return the same relation

schema. Additionally, it applies the presence condition of

each SQL query to its tuples by concatenating it with the

presence condition attribute in the projected attribute set.

4. Injected Naive Brute Force (NBF(i)): Similar to NBF, ex-

cept that the feature expression associated with each con-

figuration is injected into the SQL query. This simplifies the

job of the v-table builder, which must only fix the schema

of the returned tables rather than modifying the presence

conditions of all returned tuples.

5. Injected Unique Brute Force (UBF(i)): The same idea as

NBF(i), except applied to the UBF approach.

The SQL generators produce queries in a generic query

format that can be rendered into concrete SQL queries ex-

ecutable on each underlying DBMS engine. Each of these

approaches conduct the same essential tasks. However, they

vary in where they enforce variation preservation. For exam-

ple, UAV, NBF(i), and UBF(i) generate queries that preserve

variation by construction, while NBF and UBF yield interme-

diate v-tables that violate variation preservation and then

recover this property in the v-table builder module. A com-

plete description of each of the approaches, and examples of

the SQL queries generated for each, can be found in [5].

7 Experiments and Discussion
In this section, we compare the performance of VDBMS

with the different SQL generation approaches described in

Section 6.2. Note that this is not intended as a comprehen-

sive empirical evaluation. The main contributions of this

work are the new functionality that VDBMS adds to tradi-

tional RDBMSs, the formal model of variational databases

described in Section 4, and the theoretical results described

in Section 5. These experiments are rather provided as a

demonstration that our approach works as described and to

facilitate discussion of implementation design decisions.

For our experiments, we use two previously developed

datasets [8], both of which are available
3
online:

1. An email SPL VDB, which illustrates database variation

for an email system SPL. The featuremodel is taken from [23]

with some simplifications, resulting in eight features with

five database variants. The data is taken from the Enron

corpus
4
and is adapted based on the needs of the SPL. The

v-queries were written to resolve the feature interactions in

the email SPL described in [23].

2. An employee evolution VDB, which illustrates the ap-

plication of VDBMS to schema evolution. The schema, its

evolution, and queries are taken from [34] with some adap-

tation. It has five features denoting each time the schema

evolved, which results in five database variants. The data is

from a real-world employee database.
5

We use these datasets to ensure the correctness of each

approach and compare them. To ensure our SQL generator

methods are implemented correctly we conducted two san-
ity checks for all v-queries that yield runnable SQL queries,

which passed for every combination of approach and dataset:

1. We check that the variation-preservation property holds.

That is, we check that for all configurations, configuring the

3https://zenodo.org/record/4321921
4http://www.ahschulz.de/enron-email-data/
5https://github.com/datacharmer/test_db

https://zenodo.org/record/4321921
http://www.ahschulz.de/enron-email-data/
https://github.com/datacharmer/test_db


A Variational Database Management System GPCE ’21, October 17–18, 2021, Chicago, IL, USA

(a) The employee evolution VDB.

(b) The email VDB.

Figure 7. Comparison of SQL generators NBF, NBF(i), UAV,

UBF, and UBF(i).

resulting v-table is the same as running an identically con-

figured query over the corresponding configured database.

2. We check that the results from each pair of methods

are equivalent.

We compare the runtime of each of our approaches to

executing queries. The runtime contains all elements of ex-

ecuting a query, including type checking, annotation, opti-

mization, SQL generation, and v-table building. We run the

experiments on a MacBook Pro with a 2.4 GHz Core i7 pro-

cessor and 8 GB of 1600 MHz DDR3 RAM. All experiments

are run with PostgreSQL 13.3 as the database engine.

Figure 7 shows the runtime for each query for each of the

introduced approaches in Section 6.2 over the employee and

email VDBs. The queries are labeled at the top of the plots

and the approaches are indicated by different color bars.

Figure 7a shows that NBF(i) is usually faster than NBF, but

UBF and UBF(i) do not follow a similar pattern. Additionally,

NBF(i), UAV, and UBF are close in performance and none

consistently performs better than the others.

Figure 7b also shows that NBF(i) is consistently faster

than NBF, and UBF(i) is also mostly faster than UBF for this

dataset. While UAV mostly performs better than NBF(i), it is

comparable to UBF(i) for this dataset. Yet, UAV sometimes

generates a non-runnable SQL query due to forcing an at-

tribute to have type string when it is projected as NULL [5].

This issue can be addressed by forcing the first subquery of

the union to have all attributes projected and limiting the

number of returned tuples to zero. This would force the type

of attributes as they are in the schema and since it does not

return any tuples it will not change the result.

Based on our experiments, the query construction (from

type system to generating SQL queries) takes similar time

between the approaches. Their main difference comes down

to the gross runtime of queries on the VDB and building

the v-table. UAV does not take any time to build a v-table

since the result already has the desired schema and pres-

ence conditions, however, it spends more time on running

the SQL query since queries generated by UAV are usually

more complicated. On the other hand, although NBF and

UBF run multiple SQL queries per v-query their generated

SQL queries are simpler than the ones generated by UAV.

However, in contrast to UAV, they must adjust the returned

table for each SQL query and apply the correct presence

condition to the tuples. Finally, the main difference between

the performance of NBF and NBF(i) (and similarly, UBF and

UBF(i)) is where they apply the correct presence condition

to the tuples. While NBF(i) and UBF(i) pass this task to the

underlying database engine (which seems to perform bet-

ter) the NBF and UBF approaches do this task in the v-table

builder, in the Haskell layer. Note that all four of these ap-

proaches still have to unify the schema of the returned tables

to the v-table schema of the v-query.

8 Related Work
While variational databases provide a generic solution to the

problem of variation in databases, lots of databases research

has addressed specific kinds of variation. As described in Sec-

tion 1, these more focused approaches often provide better

solutions to one kind of variation but are less flexible and so

not suitable for many applications. In the rest of this section,

we briefly describe this databases research, and also describe

previous work from the SPL community.

Schema evolution: Current solutions addressing schema

evolution rely on temporal nature of it. They use timestamps

as a means to track historical changes either in an external

document [34] or as versions attached to databases [4, 13,

32, 42]. Some require the DBA to design a unified schema

to support querying different versions [25], while others

support migrating database variants to alternate versions [4,

13, 32, 42]. A third approach is to transform queries written

against one version to other versions [34]. Temporal evolu-

tion is tracked by requiring the database to always have a

time-related attribute in tables. Thus, queries have to specify

the time frame for which they are inquiring information [34].

Now the user can choose a wide enough time frame in their

queries to access to their desired variant(s). Unlike VDBs,

schema evolution does not support expressing a variation

need against two different variants at once, nor does it sup-

port expressing multiple information needs in a single query.
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Data integration:Data integration systems need to query

disparate data sources which often have different formats

and have been developed independently of each other [19].

Thus, work on data integration can be viewed as manag-

ing database variation in space at the content, schema, and

format level. The ability to combine data in different for-

mats (e.g., relational and unstructured data) is not supported

by variational databases. In data integration systems, a me-
diated schema is defined for the integrated data and each

data source has a wrapper/extractor that adjusts the schema

and data of the source to the mediated schema [10, 18, 38].

Users query against the mediated schema, and the system

assembles the results from the various sources. The set of

wrapper/extractors collectively describe the variation among

integrated systems, filling a role similar to our v-schemas.

A concern in data integration is tracking data provenance,
that is, which sources the results of a query came from. Data

provenance can be realized in variational databases by at-

taching a different feature to the tuples in each source. The

variation preservation property ensures these features will

be propagated to the query results.

Temporal databases and database versioning: Tempo-

ral databases [29, 37, 45] address scenarios where the state

of the data at a specific time is important, such as financial

and medical data. Some temporal databases extend tradi-

tional relational databases [2, 39, 46], while others adopt

an in-database approach [30]. Temporal databases contain

timestamps as one kind of value and queries may express

conditions over timestamps [17, 28, 33]. Temporal databases

only support content-level variation and are less expressive

than VDBs in terms of the variation that they can describe.

However, their special support for temporal values and con-

ditions make expressing temporal constraints easier than an

equivalent encoding in VDB/VRA, where one would have to

introduce features for each timestamp and then use poten-

tially large feature expressions to describe temporal ranges.

Database versioning aims to support collaborative data cu-

ration and analysis [11] by supporting non-linear, temporal

changes to a database. Once such example is OrpheusDB [26],

which is inspired by version control systems like Git. It cap-

tures different evolutions of the database in a version graph.

A version graph can be viewed as a kind of variational data-

base, although only one particular variant can be checked

out at a time. OrpheusDB supports both git-style version

control commands and SQL-like queries. Its query language

VQL can query the data as well as their versions. VQL sup-

ports a subset of the query language for versioning and

provenance proposed by Chavan et al. [15]. Similar to tem-

poral databases, database versioning systems only support

content-level variation.

Database variability in software development:A data-

base may contain variation due to evolution of the busi-

ness requirements of its associated software [24, 43]. Besides

schema evolution and databasemigration otherworkarounds

have been proposed. The first is that a different relational

database may be specified and created per-variant, according
to the information needs of each variant [35]. This is labor-

intensive and difficult to maintain since changes need to be

propagated across variants manually. The second strategy

is to define a single global schema that applies to all vari-
ants [9]. This strategy is more efficient to maintain, but can

be complex and error prone in som some scenarios, such as

SPL evolution [40, 41]. The third strategy is to define a vari-
able data model [1, 40, 41] which models a database schema

with annotations of features from the SPL to indicate their

variable existence.

9 Conclusion and Future Work
Wepresented the variational database framework as a generic

solution to encode and query multiple variants of a database

as a single entity. The VDB framework systematically en-

sures that the variation in data and queries are encoded

correctly and consistently, removing the burden of manual

workarounds from database administrators and developers.

The VDB framework assumes a closed-world variation

and configuration space, that is, the sets of features and

configurations are closed. An immediate improvement would

be to make the configuration and feature-space dynamically

extensible. This is an essential piece to updating VDBs, which

we do not yet address, since it would enable incrementally

adding new variants to a VDB. Additionally, the performance

of VDBMS can be improved by different optimizations, such

as defining a user-defined type and functions for presence

conditions in databases.

More speculatively, VDBMS could be made more usable

by providing a visual interface that shows a snapshot of the

database as the user writes their query. This improvement

requires a type system that allows for holes in queries. This

can be enriched by designing an error-tolerant type system

that pinpoints where the user made a mistake in their query

and allows the part of query that is well-typed to run [16].

Finally, although we have not implemented a system to

generate a VDB for a variation scenario, it is trivial to do

so if we have the variant databases. The problem is that, in

most cases, the variant databases do not exist since current

variation scenarios only simulate the effect of variation and

do not incorporate it directly into the database or queries.

Thus, an expert needs to manually generate the database

variants. Another way to do this would be to extend the

query language to support database updates, which would

also significantly increase the applicability of our system.
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